随车起重机上车结构设计及液压控制系统设计【含CAD图纸、说明书】
收藏
资源目录
压缩包内文档预览:
编号:78138237
类型:共享资源
大小:834.61KB
格式:ZIP
上传时间:2020-05-09
上传人:机****料
认证信息
个人认证
高**(实名认证)
河南
IP属地:河南
50
积分
- 关 键 词:
-
含CAD图纸、说明书
起重机
上车
结构设计
液压
控制系统
设计
CAD
图纸
说明书
- 资源描述:
-
压缩包已打包上传。下载文件后为完整一套设计。【清晰,无水印,可编辑】dwg后缀为cad图纸,doc后缀为word格式,所见即所得。有疑问可以咨询QQ 197216396 或 11970985
- 内容简介:
-
随车起重机上车结构设计及液压控制系统设计压缩包内含有CAD图纸和说明书,Q 197216396 或 11970985 图书分类号:密 级:摘要本文简要介绍了随车起重机的结构和特点,总体设计了随车起重机的性能指标以及关于各臂伸缩的原理计算。并对随车起重机的设计要点进行了简要说明。本文重点介绍了随车起重机伸缩部分的设计,变幅结构的设计和上车液压系统的设计。本次设计主要内容和要求:设计出具有一定重量的随车起重机完整的上车结构,绘制出上车装配图和每节臂的结构图。设计出上车液压系统,绘制上车液压系统原理图。通过分析和计算,确定每节臂的截面形状及截面尺寸,设计每节臂的具体结构和臂之间的连接方式,设计整个起重臂伸缩方式。并且设计随车起重机上车实现起重臂伸缩,变幅所需的上车液压系统,计算选择合适的泵,油缸及阀等液压元件。其中,以臂的设计最为重要,对此作为重点考虑。关键词:随车起重机;伸缩臂;液压元件;选型 AbstractThis article is briefly introduced with the vehicle the hoist crane structure and the characteristic, the system design with the vehicle hoist crane performance index as well as the principle computation which has expanded and contracted about various arms. And it has carried on the briefing with the vehicle to the hoist crane design main point. This article is introduced with emphasis the hoist crane expands and contracts the partial designs with the vehicle, the amplitude structure design and boards the hydraulic system design.This design main content and request: Designs has the certain weight the hoist crane integrity to board with the vehicle the structure, draws up boards the assembly drawing and each arm structure drawing. Designs boards the hydraulic system and the plan boards the hydraulic system schematic diagram. Through the analysis and the computation, I determined each arm the section size and the section shape, design each arm between the concrete structure and the arm connection way, the design entire erector beam book expansion and contraction way. And designs the hoist crane to board the realization erector beam to expand and contract with the vehicle, the amplitude must boards the hydraulic system, computation choice appropriate pumping, hydraulic pressure part and so on cylinder and valve Among them, thought especially the arm design is most important, regarding this I with emphasis considered.Keywords With the vehicle hoist crane Expands and contracts the arm Hydraulic pressure part ShapingVI随车起重机上车结构设计及液压控制系统设计目 录1绪论11.1概述11.2随车起重机主要分类11.3选用随车起重机注意事项11.3.1随车起重机的起重工况11.3.2随车起重机的配置11.4国内外随车起重机的发展21.4.1国外随车起重机的发展现状31.4.2国内随车起重机发展现状51.4.3随车起重机的发展趋势62 随车起重机的性能参数112.1 性能参数112.2计算载荷与设计方法123 臂的设计143.1各臂长的计算143.2吊臂截面的选择153.2.1基本臂的设计223.2.2第二节臂的设计233.2.3第三节臂的设计253.3耳板及轴销的设计273.3.1耳板校核273.3.2立柱与基本臂铰接处轴的校核284 液压系统的设计294.1变幅油缸的设计294.2泵的选择304.3箱型吊臂伸缩机构31结论32致谢33参考文献34附录35附录135英文原文35中文翻译46551绪论1.1概述随车起重机是安装在普通载货汽车上的一种起重设备,主要由稳定支腿、回转基座、吊臂总成、吊钩等组成。随车起重机和载货汽车操纵系统是完全分开的,所以随车起重机既能够实现起重作业,又不影响汽车底盘的载货运输。随车起重机的应用非常广泛,因其机动灵活等特点,在许多工况下都可代替中小型汽车起重机进行起重作业,深受广大用户的欢迎。1.2随车起重机主要分类随车起重机一般可分为伸缩臂式结构和折叠臂式结构两大类。伸缩臂式的随车起重机是靠伸缩吊臂、变幅机构和卷扬机构(钢丝绳)来完成货物的起重装卸工作,折叠臂式随车起重机是通过两个关节吊臂和几节伸缩臂的组合动作来完成货物的起重装卸工作。由于结构复杂、制造成本较高,折叠臂式产品主要定位于油田等国内高端用户;伸缩臂式产品相对制造成本较低、性价比高,主要定位于中低端用户折叠臂式随车起重机具有多关节、可折叠等优点,安全可靠、占用空间小、可实现曲线吊装,提高了产品的使用便利性及操作安全性,同时要求操作人员的操作技能也较高。伸缩臂式随车起重机结构简单、操作方便,作业效率高。由于结构的不同,一般来说,相同起重能力、相同吊臂长度的伸缩臂式随车起重机比折叠臂式产品价格低。1.3选用随车起重机注意事项1.3.1随车起重机的起重工况客户在选择随车起重机前首先应考虑自己的使用工况,即从吊装货物的质量、工作幅度以及货物起升高度三方面综合考虑。如SQ16随车起重机最大起升质量为16t,但是吊臂在多大工作幅度能够吊起16t没有明确的规定。如果随车起重机额定起重能力是3m起重16t的话,那么16t的货物在4m位置时选用此种型号的随车起重机肯定是不行的。另外起重机的起升质量与吊臂长度有密切关系,同一起重能力的吊臂伸出越长,起重能力越低。因此在工作幅度较长、有起升高度要求时,客户最好与厂家技术人员进行沟通后决定产品。其次是随车起重机在最大载荷的70%90% 情况下工作最佳。因此,选择随车起重机的额定起升能力要比实际高一点。1.3.2随车起重机的配置1 )随车起重机厂家一般将起重机的操纵系统分成两种配置,一种是手动操作,另一种是遥控操作。用户可根据自己的需求进行选择。2)伸缩臂式随车起重机使用简单快捷,其伸缩吊臂一般有2种结构形式:液压油缸直接推动吊臂伸缩、液压油缸通过钢丝拉索带动伸缩吊臂的伸缩。前一种是由多个伸缩油缸串联一起,每个伸缩油缸控制一节伸缩臂,通过伸缩油缸的伸缩来控制吊臂伸缩。此种结构简单,易维修,维修时间短,但因伸缩油缸伸缩时间长,工作效率较低。后一种是由伸缩油缸控制主动臂,通过钢丝拉索将其他伸缩臂连接到主动臂上,当伸缩油缸运动时,其他吊臂随着主动臂的伸缩而实现同步伸缩。此种吊臂因几节吊臂同步伸缩,所以工作效率较高,而且拉索式伸缩机构外观简洁大方,造型比较流畅。但因伸缩机构置于伸缩吊臂内部,一旦伸缩机构发生故障,需要将所有伸缩吊臂全部拆开,一般需要专业维修人员才能承担此种维修工作。因此当客户选择该种结构形式的吊臂时,需了解清楚其伸缩机构的可靠性,尤其必须明确其伸缩油缸设计、制造的可靠性。3)随车起重机可以匹不同的辅具。通过辅具随车起重机改变了功能单一的缺点,向功能多样化、运用精细化、操作人性化的方向发展,从而具有了更加宽广的应用领域。辅具主要加装在吊臂头部,如工作斗、抓斗、高空作业平台、各种抓具、夹具、吊篮、螺旋钻、板叉、装轮胎机械手和拔桩器等,使随车起重机具备了一机多用的功能,广泛应用于其他工作场合,如高空作业、桥梁维修、木料搬运、散装货物装运、城市绿化等,甚至还可以用于交通事故救援。由于折叠臂式随车起重机机构灵活,因此用户如果需要选购加装辅具的随车起重机,一般应选择折叠臂式产品。1.4国内外随车起重机的发展随车起重机是将起重作业部分装在载重货车上的一种起重机。随车起重机由于具备既能起重、又能载货、机动灵活这一独特的优点,而广泛应用于交通运输、土木建筑业(包括建筑工程、公路桥梁工程、市政修建工程、机械化基础工程等)电业、野外作业、石材业、码头的货物装卸及远距离转移货物,加装附加装置后,还可用于桥梁维修、高空架线及检测等作业中。随着国家基础建设的规模不断加大,随车起重机在起重运输行业和野外作业发挥的作用也将越来越大。1.4.1国外随车起重机的发展现状 目前,国际上有瑞典、意大利、奥地利、德国、美国、日本、加拿大等国家的十几家公司生产的几十种规模型号的随车起重机,主要以欧洲为主。欧洲从20世纪4050年代开始生产随车起重机,主要厂商有HIAB(瑞典)、FASSI(意大利)、FERRARI(意大利)、PALFINGER(奥地利)、TIRRE(德国)、HEILA(意大利)等;亚洲生产随车起重机厂商主要有加藤(日本)、多田野(日本)、由尼克(日本);美洲生产随车起重机厂商主要有GROVE等。这些都是世界知名的生产随车起重机的公司,各公司都形成了功能多元化、品种系列化、机电液控制一体化的产品体系,最大起重量已超过60,吊臂长度已超过30,最大起重力矩已超过1000 。下面就几家著名的随车起重机厂家的产品特点进行具体分析。瑞典世界上较早生产随车起重机的国家位于瑞典HUDIKSVALI城的希亚伯(HIAB)公司,是近五十年来世界上居领先地位的、最富有创造力的随车起重机制造公司,早在1947年就生产了第一台起重机。该公司在丹麦、荷兰、西班牙设有分厂,并在60多个国家建立了完备的销售和服务网。HIAB公司生产的一般用途折臂式随车起重机,设计十分紧凑,行驶状态时的外形尺寸较小。除生产一般用途的随车起重机外,HIAB公司还生产伐木随车起重机、船用起重机、铁路轨道车随车起重机。此外HIAB公司还配备了多种附加装置如抓斗、吊篮、钻头、特殊板叉、装轮胎机械手等,使随车起重机除起重作业外还可完成散装物料装卸、钻孔、高空作业、成堆建筑板料装卸以及大型轮胎拆装等项工作,实现了一机多用。意大利世界上随车起重机生产厂家最多的国家意大利随车起重机年产量达万台,而且50%供出口。该国的生产特点是:工厂小、产量大、品种全、出口多。共有FERRARI、PESCI、CORMACH、HEILA等十多家生产厂,规模从几十人到一百多人,但每个工厂的年产量都在千台以上,且各厂均有自己较完善的系列产品。()FERRARI公司设在意大利艾米利亚(EMILIA)的FERRARI公司,从1970年以来就制造随车起重机,1998年以后该公司建立了一个完整的铰接的折臂式随车起重机“S”系列。()PESCI公司PESCI公司建厂于1860年,现在是专门生产铰接的折臂式随车起重机的公司,有SL、SM、SP三个系列品种。PESCI公司的产品,具有多节起重臂,并且可装有多种形式的附加伸长臂,并可选用种类繁多的附件,如钢丝绳卷扬机、抓斗、吊桶、遥控装置等。()CORMACH公司CORMACH公司的一般用途随车起重机可用于拖曳和起吊集装箱。特殊用途的随车起重机可用作伸缩臂救险车。CORMACH公司产品的特点是吊臂伸缩采用了多级复合油缸,车架装设了前后H型支腿,四支点保证整车具有良好的稳定性。()HEIL公司HEIL公司的产品品种比较齐全,其特点是起重臂为折臂加伸缩式,并可加装副臂,以扩大其工作范围。日本建立了对随车起重机综合评价的新概念维修业与建筑业的繁荣,致使日本国内市场对随车起重机的需求量大增,加藤、多田野、由尼克三家公司,是日本随车起重机的主要生产厂,它们的产品结构相似,因此只重点介绍一下多田野株式会社的产品。 多田野生产直臂式、折臂式两种随车起重机,以直臂式为主。直臂式产品的特点是:吊臂为五边形断面,采用全动力伸缩,转台以支点方式固定在车架上,此种支撑方式,能分散起重机在不平路面上行驶时产生在车架上的扭转应力,还配备了高起动力矩轴向柱塞马达的起升机构,能保证顺利起吊易于损坏的货物,其支腿可全伸或半伸,这样就使在狭窄工地上作业成为可能。此外备有幅度指示器、重量显示、过卷报警、吊钩安全止动销等多种安全装置。日本人根据当今的市场需求,建立了对随车起重机产品特征综合评价的新概念,即美观、安全、舒适、简单。()美观:多田野随车起重机的外观设计,要求和城市的景观相协调,因此采用了带圆角的造型,以减轻人们过去对起重机的威压感。在着色上,实现了与卡车的一体化。 ()安全:多田野随车起重机的安全装置,基本上是按照与汽车起重机相同而配置的。最近该公司又推出一种整机稳定性报警装置,它是根据液压支腿反力,测定出油缸的内腔压力,然后与规定值进行比较、运算,当出现倾翻危险时,发出声光或语言报警。吊钩埋入式收藏方式,是多田野的又一创新。这种方法是将吊钩水平收紧在吊臂的下平面上,当起重机行驶时,吊钩和绳索不会防碍驾驶员的视线,在雨天行驶还可减少钢索的油水飞溅到驾驶室正面的玻璃上,提高了行驶的安全性,也可防止以往的钢索固定方法,由于钢索收的过紧,造成车架变形的不良影响。()舒适:多田野随车起重机的全部操作,都能用位于车架两侧的操作杆加以控制,操作极其轻便,不会使人感到疲劳,在升降、伸缩、回转、起落、支腿伸缩五个操作手柄上,均贴有明显的形象化标记,而且在回转手柄上切有细槽,因此即使在夜间也极易识别。还配置有线遥控装置,通过一根15长的电缆,操作者可一手拿按钮,另一只手扶重物,准确地进行起重作业。美国大公司同样重视随车起重机的生产和发展GROVE公司是美国最大的轮式起重机制造商,主要生产汽车起重机、越野式轮胎起重机、全路面起重机,而NATIONALCRANE则是GROVE专门生产随车起重机的子公司,该公司以生产直臂式随车起重机见长,近几年又重点开发了铰接的折臂式起重机。该公司生产的直臂式随车起重机为后置式,设计风格独特,采用了一种全液压高支点弧线摆出式斜伸支腿,支腿的支撑点很高,摆出后成A字形,这种支腿有较大的跨距,并能在不平的路面上有效地调平。吊臂断面为矩形,采用高强度钢制造,节数24节,可以装设12节副臂,副臂在主臂侧面折叠存放。吊臂为全动力伸缩,回转结构有齿轮齿条式和回转支承小齿轮式两种,后一种是由一个抗剪切滚珠轴承和低速大扭矩马达带动的小齿轮组成。近几年该公司还注意发展了铰接的折臂式随车起重机,其支腿均为H型,起升机构以背包式安装在吊臂后端。该公司生产的随车起重机均可装配1人用吊篮、2人用吊篮、集装箱抓具、螺旋钻、遥控装置等,以扩大用途。1.4.2国内随车起重机发展现状我国随车起重机的生产起步较晚,到70年代末,全国生产的随车起重机产品品种还很单一,生产规模很小,到80年代,随车起重机产品的品种及产量均呈增长趋势,近几年来,随车起重机在国内市场的产销总量增长势头更猛,从行业统计结果可以看出,1999年市场总量为1000台左右,2000年市场总量约为1300台,2001年市场总量约为1700台,目前的市场总量约为2000台。全国生产随车起重机的厂家约有10多家,主要企业有徐州随车起重机公司、石家庄煤矿机械厂、山西长治清华机械厂、武汉汽车起重机厂、湖南专用汽车制造厂等。另外,近年锦州重型机械股份有限公司与韩国广林特装车株式会社组建的合资公司也开始涉足随车起重机领域,且发展势头良好;常林股份有限公司与奥地利的PALFINGE公司也将开始合作生产随车起重机。徐州随车起重机公司组建于2001年9月,在消化吸收国外先进技术的基础上生产SQ系列伸缩臂式、折叠臂式随车起重机,并由航天部定点生产国防工程专用随车起重运输装填车、雷达车等产品,其产品曾批量出口伊拉克等国家。近两年来,依靠技术创新,取得了较快发展,2002年开发了近20个新产品,在国内处于领先地位,成为我国随车起重机行业的后起之秀。石家庄煤矿机械厂是我国较早生产直臂卷扬随车起重机的工厂,其产品风格和日本多田野TM23系列相似,具有一定的市场覆盖率。山西长治清华机械厂是航空航天部直属企业,早期生产直臂式随车起重机。该厂引进瑞典希亚伯(HIAB)公司生产技术后,生产折臂式产品,无起升机构,采用变幅方式进行重物升降,具有欧洲产品的风格。武汉汽车起重机厂是较早生产随车起重机的厂家,其产品为直臂式卷扬起重机,与东风、解放及黄河汽车配套,可在汽车底盘的尾部又加装了10液压绞盘,特别适合于电业部门抢险与施工需要。湖南专用汽车制造厂始建于1950年,系湖南省机械行业重点企业,是国家计委、国家经贸委和机械工业部在全国唯一定点的随车起重运输车生产基地。主要产品有随车起重运输车、自卸车、厢式车、运输加油车、后装压缩式垃圾车等。由于我国随车起重机起步于70年代,相对较晚,而且发展速度不快,只是近几年才有较大发展,和国外相比,还有很大的差距。具体表现在:() 品种少、产量低我国随车起重机现处于初级发展阶段,品种较少。中小吨位重复较多,至今尚未形成大、中、小完整的系列,年产量只相当于国外一个厂家的生产能力。() 起重力矩小,技术水平低我国随车起重机以直臂卷扬为主,受国内汽车底盘的限制,起重力矩小,其他性能指标也一般低于国外先进产品。目前国内企业对随车起重机的研究开发投入很少,液压系统、控制系统的技术水平也有一定差距。() 安全装置不齐全,操作不方便我国随车起重机仅装有起升高度限位及平衡阀、溢流阀等一般安全装置,全部为手动操作。而国外早已将电子技术广泛运用到随车起重机上,如带有微电脑的力矩限制器及防倾翻保护器等,并且已实现了有线与无线遥控。() 功能单一我国随车起重机以起重作业及运输功能为主,而国外随车起重机均有多种附具,主要加装在吊臂头部,如工作斗、抓斗、高空作业平台、各种抓具、夹具、吊篮、螺旋钻、板叉、装轮胎机械手、拔桩器等,使随车起重机具备了一机多用的功能。另外,国外一些厂家进一步开发了铁路专用随车起重机等专用产品。() 外形不美观我国随车起重机设计单调,忽视了和汽车外形的协调,而国外对随车起重机的着色非常严格,不仅在外形和着色上实现和卡车的一体化,还要求和城市的景观相协调。1.4.3随车起重机的发展趋势尽管随车起重机行业进入中国市场只有短短30年的历史,但随着产品技术水平的不断更新和提升,产品功能的不断丰富和完善,产品用途的不断拓展和延伸,近年来,国内随车起重机行业取得了长足的进步,并迎来前所未有的发展机遇。随车起重机以逐渐从一个默默无闻、市场认知度极低的小机种,以其快速、灵活、高效、便捷,装卸运输二为一的优势,不仅在交通运输、电信电力、油田码头、市政园林、计量检测、市政作业、石油开采及铁路吊装等传统行业大显身手,添加了附加装置的变形产品还被广泛用应于消防,军队,非开挖作业及工程抢险领域,产品功能和产品用途都大大超出原有的范畴。在近十年里通过国内随车起重机制造企业自身的不懈努力和对市场的开发培育,目前随车起重机已被用户广泛认知接收,并逐渐赢得市场青睐。2004年以来国内随车起重机行业回顾随车起重机在我国起步较晚,行业内受重视程度较低,市场的认知度较低,因此发展缓慢。2004年以来,中国随车起重机销量每年以15%-20%的速度快速增长。从2004年下半年开始的宏观调控,结束了工程机械行业连续3年的井喷势头。作为机械行业的一员,尽管随车起重机所占市场份额相对较小,但并不意味着可以幸免于宏观调控给工程机械行业带来的阴影之外。由于随车起重机于卡车的紧密关联性,汽车行业的波动对随车起重机行业的影响尤为突出,2005年国家1589号关于治理超载超限的法规犹如“一场寒冬”,使2005年下半年整个行业出现拐点,2005年8月,随车起重机市场下降到当年的最低点,9月份略有回升,10月份再次下降,接近2004年同期水平,后两个月基本保持平稳运行,这种态势一直持续到2006年一季度。进入2006年,工程机械行业整体呈现出“非常规”增长,占工程机械市场总销售60%以上的挖掘机,装载机和汽车起重机等机种销量的增长更是让人始料未及。其中挖掘机增长幅度超过100%,装载机增长幅度达76.2%,汽车起重机同比增长两倍以上。2006年一季度销售随车起重机550台,比2005年同期增长20台,同比尽增长3.8%,接近2004年一季度的水平。2006年4月份随车起重机行业结束了低迷徘徊,出现迅速增长态势,整个行业增幅达到75%,这期间国内主要生产厂家均表现出强劲的增长势头,其中徐工随车起重机公司4月份同比增长107%,石家庄煤矿机械制造厂同比增长152%,中联浦沅同比增长87%。以后,随车起重机行业持续增长的态势一直保持到年底。纵观整个随车起重机行业发展不难发现,作为机械行业的新兴机种,其发展规律在整个国家经济背景下既保持着工程机械发展的一般规律,同时也存在着自己的特殊规律。随车起重机行业在经历了2004年宏观调控时期的短暂萎靡后,2005年出现反弹,总销售量2110台,并在2006年取得了总销售量2761台的骄人业绩。这种增长势头在进入2007年后丝毫没有改变的迹象,2007年随车起重机销售增幅保持在20%-30%,达3000台左右。2007年1-6月国内随车起重机市场回顾2007年上半年,我国工程起重机行业在国内市场需求旺盛和出口快速增长的带动下保持高速发展。2007年1-6月,全行业利润总额同比增长105%,产品销售收入同比增长56%,工业增加值同比增长54%。汽车起重机销量接近万台,同比增长28%,随车起重机销售量达到1700台,同比增长30%。在强大的市场需求带动下,随车起重机行业2007年上半年呈现快速增长态势。在销量增长的同时,由于境外施工单位采购随车起重机多集中在6.3t以上的产品,随车起重机行业产品结构也随之进行调整,这将推动国内随车起重机市场需求朝着大吨位的方向发展。2007年上半年随车起重机行业快速增长面面观中国工程机械的发展主要决定于中国经济的发展、经济政策的走向及基础建设的投资情况等。宏观经济走势2007年上半年,我国宏观经济继续保持快速增长,一季度我国GDP同比增长11.1%,增速同比加快0.7个百分点;固定资产投资增长23.7%,同比回落4个百分点;工业企业利润增长43.8%,同比上升22个百分点;工业增加值同比增长18.3%,同比加快1.6个百分点。在宏观经济快速增长的背景下,作为制造业中的基础装备行业,机械行业在上半年也延续了过去几年来的较高景气度。2007年一季度,我国机械行业工业总产值同比增长31.94%,增幅同比提高2.7个百分点;销售收入同比增长31.15%;出口交货值2273.13亿元,同比增长34.7%;利润增幅也在40%以上。政策走向“十一五”规划中的“建设社会主义新农村”在全国各地如火如荼地开展,这一政策极大地拉动了广大农村地区对随车起重机的需求。同时,由于近两年地方政府换届产生大量的新项目,2007年进入大规模的土建工程,对配备中重卡的随车起重机产生大量的需求。全国公路总里程大幅增加,将由2006年的160万千米提高到2010年的210万-230万千米,平均每年增加10万-14万千米,全国建成“五纵七横”国道主干线。人口在20万以上的城市高速公路连接率将达到90%,高速公路总里程达到5万千米,这些公路的建设将促进随车起重机行业的发展。2008年北京奥运总投入将达2800亿元,奥运工程已在2007年底接近尾声,2010年上海世博会建设总投资80亿元。这些工程将拉动随车起重机的销售,并在2007年有一个稳定的增长。行业态势汽车行业根据2006-2007年中国宏观经济极度报告,GDP每增加一个百分点,重卡销售将增加15000台左右,中卡将增加20000台左右所以2007年载货车的销售量将平稳增长,全年同比增长8%左右,2007年所有卡车销售量达到140万辆,特别是欧洲标准的实施,将拉动卡车行业的出口,从而带动随车起重机的出口,因为在国外,每10台卡车就有3台左右安装随车起重机。国家对汽车行业出口实行许可制度,但对随车起重运输车的出口没有这方面的限制,从而刺激了部分进出口公司加大向国外客户推荐随车起重运输车的力度,出口形式将会很好。2007年卡车销量达到历史新高,中重卡销量达到54万辆,其中中卡22万辆,重卡32万辆,治理超载超限和集中收费的执行,刺激了大吨位随车起重机的需求。物流行业 从2005年12月11日起,包括公路货物运输、货物租赁、一般货物批发、零售及物流配送,出入境汽车运输公司将取消在地域、股权比例等方面的限制,实行物流领域全面开放。中国物流业将以每年20%的速率增长。物流行业、运输行业和吊装行业向中短途专用、快速、便捷化方向发展,为随车起重运输车行业提供了发展的机遇。出口增长拉动根据中国工程机械工业协会对部分主要的企业的统计,2007年1- 6月,出口的大幅度增长是拉动全行业快速增长的主要因素。2007年1- 6月,工程机械行业累计出口29.67亿美元。2007年1- 6月随车起重机出口也取得良好的业绩,行业内主要几家制造企业均实行不同程度的出口,其中徐工随车起重机公司产品出口最为突出。据不完全统计,该公司1- 6月份实现出口销售217台,同比增长4.29倍,产品出口在中东市场、亚洲市场、俄罗斯市场的基础上,近期,又申请CE认证,为下一步进入欧洲市场打下基础。石家庄煤矿机械有限 公司在开拓国际市场中也取得很大进展,2007年有批量产品先后销往印度、哈萨克斯坦、俄罗斯和安哥拉。中联浦沅随车起重机也随中国境外施工队到达了安哥拉。宇通集团生产的随车起重机也与2007年实现产品出口零的突破。国外随车起重机技术特点尽管2007年上半年国内经济发展、经济政策走向及基础建设的投资等宏观环境对于随车起重机行业的健康发展起到了积极的促进作用,为随车起重机行业的进步营造了一个有利氛围。再加上国内随车起重机行业中主要制造企业自身的不懈努力,国内随车起重机行业取得了有目共睹的成绩。但纵观国际随车起重机行业的整体态势就会发现,与国际随车起重机行业相比,国内随车起重机行业仍存在着较大的差距。这种差距主要体现在产品技术上。目前国外随车起重机产品主要呈现出以下技术特点。一是起重能力不断提高,工作幅度不断加大,产品已逐步具备了取代小吨位汽车起重机的实力。2007年4月在德国宝马展上展出的产品中,最大起重力矩已经达到了140tm,接近50吨汽车起重机。尽管在起重性能和起重高度上还不能完全代替汽车起重机,但多功能的辅具和优秀的产品结构,再加上随车起重机自身快速、高效、便捷的特点,使其在中小吨位起重机市场占据了一席之地。在起重力矩不断提高的同时,随车起重机的工作幅度也在不断加大,有的产品伸缩臂数量达到10级,最大工作幅度到底25米,再加上不同伸缩臂节数的JIB(最大可达到8节),使其可以接近40米的工作幅度。二是功能的拓展扩大了使用范围,国外的一位使用者说,“随车起重机的使用方法不是取决于随车起重机本身,而是取决于使用者的思维和使用习惯。”目前国外随车起重机越来越注重对辅具的开发,以拓展功能、扩大使用范围。除了JIB以外的多功能辅具接口越来越多,与之匹配的辅具种类和数量也在不断增加。随着随车起重机功能的不断扩展,用户可选择的余地也越来越大,从常规的绞车到木材抓具、废钢材抓具、废弃物抓具,到建筑材料的运输夹具、运输铲斗,再到园林使用的旋转挖具、载人用吊篮等。所有的这些辅具目前已成功用应到随车起重机中,使用户在体验随车起重机带来的高效率的同时享受其中种种意想不到的便利。三是随着人力资源成本不断上升,效率与安全成为随车起重机追求的两大目标。由于随车起重机自身具备了集起重与运输为一体的特点,这一特点让原来复杂的工作变得简单与传统起重机复杂的操作相比,随车起重机简便的操作使效率得到前所未有的提高。设计上产品结构的优化确保了劳动生产率的提高。近年来,起重机安全问题在全球范围内越来越被重视,个人人身安全成为所有工作的前提。这使得随车起重机的安全和环保问题显得格外突出,如何来提高随车起重机的安全性能和环保指标,成为随车起重机设计人员首先要考虑的问题。因此,随车起重机上各种各样的安全装置、防护装置、报警装置、液压互锁及安全切断等便应运而生,电子防超载系统、便携式计算机监控系统的使用,从根本上解决了用户在使用产品过程中依靠估算进行起重作业导致的超载问题。四是一体成型技术的用应使随车起重机在与底车匹配时所引起安装问题得到比较完美的解决,这大大降低了随车起重机的安装成本,也间接降低了用户在采购时所需要的直接成本。此外,为提高与底车的匹配性,国外几乎所以厂家均标配了翻转支腿。在起重力矩达到500kNm时,一般厂家均标配了双层伸缩支腿和后支腿或双层后支腿,来提高整车的稳定性能。五是控制系统逐步采用集成或半集成的有线或无线遥控系统。帕尔菲戈同时开发了两种新型电子控制系统,最近研发的集成式稳定性系统(ISC)可以根据不同的工作环境和支腿打开距离设定不同的角度和方向时进行实时监控和显示。此外,DPS系统让最大工作幅度和最大起重量这两个原来不可能调和的矛盾得到比较完美的解决。与之类似的还有希尔博的Hipro系统。对随车起重机行业的冷静思考由于随车起重机市场前景日益看好,加之进入的技术门槛较低,一些不具备生产研发能力的企业纷纷涌入该行业,由于技术、管理和销售等方面无法与实力相对强大的企业抗衡,只能模仿甚至剽窃别人的产品,导致整个行业产品同质化现象普遍存在。随着随车起重机市场的逐步成熟,用户对随车起重机产品的选择也越来越理性,国内随车起重机行业将面临着重洗牌的局面。如此火爆的市场给随车起重机行业带来了巨大的发展机遇,然而,此时,冷静、理性的思考更能考验随车起重机企业应对变化、驾驭市场的能力。 2 随车起重机的性能参数随车起重机的主要性能参数包括起重量、起升高度、幅度、各机构工作速度和重量指标等。这些参数表明起重机工作性能和技术经济指标,它是设计起重机的技术依据,也是生产使用选择起重机技术性能的依据。2.1 性能参数(1) 起重量随车起重机起吊重量称为起重量,通常以Q表示,单位t。起重机的起重量参数通常以额定起重量表示的。所谓额定起重量是以起重机在各种工况下安全作业所容许的起吊重物最大重量。它随着幅度的加大而减小。最大额定起重量是指基本臂处于最小幅度时所起吊重物的最大重量。起重量是起重机的主要技术参数。为了适应国民经济各部门的需要,同时考虑到起重机品种发展实现标准化、系列化和通用化,对起重机的起重量,国家制定了系列标准。(2) 幅度起重机回转中心轴线至吊钩中心的距离称为幅度或工作幅度。当某一长度的吊臂处于与水平面成某一夹角时,这个幅度值也就确定了,但当吊臂处于同一夹角时,在吊重状态与在空钩状态时的幅度值是不等的。,所以标定起重机幅度参数时,通常是指额定起重量下起重机回转中心轴线至吊钩中心的水平距离,并用R表示,单位m。幅度表示起重机不移位时的工作范围。所以幅度也是衡量起重机起重能力的一个重要参数。(3) 起重力矩起重机的工作幅度与相应于此幅度下的起重量的乘积称为起重力矩,并以M表示,则M=QR,单位tm。它是综合起重量与幅度两个因数的参数。所以,起重力矩这个参数就比较全面和确切地反映起重能力。(4) 起升高度起升高度是指自地面到吊钩钩口中心的距离,以H表示,单位m。在标定起重机性能参数时,通常以额定起升高度表示。额定起升高度是指满载时吊钩上升到极限位置,自吊钩中心到地面的距离。最大额定起升高度的确定,是根据起重机作业要求和起重机总体设计的合理性综合考虑。(5) 工作速度起重机的工作速度主要包括起升、变幅、回转和行走速度。对于伸缩式起重机还包括吊臂伸缩速度和支腿收放速度。起升速度是指起重吊钩升起(或下放)的速度,以表示,单位。回转速度是指起重机转台每分钟转数,以n表示,单位。起重机工作速度选择合理与否,对起重机性能有很大影响。一般来说,起重机工作效率与各机构工作速度有直接关系。当起重量一定时,工作速度越高,生产率也越高。但速度高也带来一系列不利的影响因素。如惯性增大,起制动时引起的动力载荷增大,从而机构的驱动功率和结构强度也要相应增大。所以,合理选择工作速度要考虑与之相关的一系列因素。(6) 自重及重量指标起重机自重是指起重机处于工作状态时起重机本身全部重量,以G表示,单位t。起重机自重这一参数是评价起重机的一个综合性指标。它反映了起重机设计、制造和材料的技术水平。随着技术的进步和材料性能的提高,起重机自重可以相应地减少。2.2计算载荷与设计方法设计起重机时,必须首先确定在起重机上的外载荷,以作为计算起重机稳定性、支腿压力、结构零部件和金属结构强度以及选择原动机功率的依据。作用在起重机上的外载荷,应根据实际情况确定,主要有:起重载荷、起重机自重载荷、风载荷、重物偏摆引起的载荷、惯性和振动、冲击引起的动力载荷等。()起重载荷+q对于吊钩式起重机,起重载荷包括最大起重量和吊钩自重q。()自重载荷自重载荷指除起重载荷外起重机各部分的总重量,它包括结构自重、机构和电气设备等重量。起重机自重,在设计前是未知的,初步设计时可根据同类型、参数相近的机型进行初步估计,但最后核算的重量如与估计重量出入较大时,则应重新进行调整和核算。自重载荷根据具体结构形式,以集中或均布载荷作用在相应位置上。()风载荷随车起重机主要工作在室外,应考虑风产生的载荷,但本设计中,总臂长较短,而且工作在平原地区,风力较小,可不予考虑。()重物偏摆引起的载荷回转动臂式起重机挠性悬挂重物时,因受水平风力、起重机回转时的离心力、变幅时重物水平移动惯性力、以及回转加速、制动时的切向惯性力等原因使重物偏摆一个角,而引起水平了力:(+q)tg 式(2.1)(5) 惯性力和离心力引起的载荷P、F当回转、变幅、行走等机构起动或制动时,由起重机相应的运动部分的自重产生惯性力P;当起重机回转时,由起重机构回转部分自重产生离心力F。P和F可按下式计算: 式(2.2) 式(2.3)式中V 运动部分重心处的线速度();t 机构起动和制动时间(s);R 回转运动部分的回转惯性中心到回转中心的距离(m);G 运动部分的自重(kg)。 ( 6 ) 振动和冲击引起的动载荷由于起重机是弹性系统,在骤然加载或减载时,会引起系统的弹性振动,这种振动会产生振动效应,通常把相应于振动应力的载荷称为振动载荷。这是一种动力载荷。对于金属结构和支承零件,由于起升机构工作时,被提升的重物骤然离地或下降时骤然制动,就会产生这种动力载荷;对应于传动零件,由于起重机各机构起动、制动要引起动力载荷,因而机构传动零件也要承受这种载荷。为了便于计算,通常动力载荷以静载荷(当不平稳时还包括惯性载荷)乘以一个大于1的系数,系数称之为动载荷系数。具体选取可分别按金属结构和传动零件由起重机设计手册所推荐的公式和数值进行计算和选取。其动载荷可按下列近似公式计算: =1+ 式(2.4)式中 V 重物起升速度(m/s); 对于动臂型起重机0.200.40设计中作为参考的参数起重能力/tm 3.8最大工作幅度/m 4.62最大起升高度/m 6.0最小幅度下起升能力/ 最大幅度下起升能力/ 排油量/(L /min) 49额定压力/ 14油箱容量卷扬速度/(m/min) 旋转速度/(r/min) 2.5举臂速度/() 伸臂速度/(m/s) 起重机质量/kg 800推荐汽车载重重量/t 3.13.83 臂的设计3.1各臂长的计算为使伸缩臂结构紧凑,在前一节臂中为后一节留下一段距离c,在此距离内要设置伸缩油缸的铰支座和其他需要的构件,其大小视具体情况而定,常在0.250.40m之间。因为c值大于伸缩臂外露长度a(a=0.25m),所以令c值为0.30m。在第i节伸缩臂缩回后,除外露部分a外,在(i-1)节臂内的长度为加上伸出后仍在前节臂内的那部分搭接长度。第节臂插在前一节内长度为(+)。第i节臂的结构长度为,则=+a=+ 式(3.1)搭接长度一般为伸缩臂外伸长度的1/41/5,由于随车起重机吊臂较短,取1/5代入。则三臂长度计算如下: 总长 外露 搭接第一节臂 第二节臂 (-300+250) (-50)-(-300)x0.2 (-300)x0.2第三节臂 -100 (-100)-( -350)x0.2 (-350)x0.2 吊臂最大工作幅度(mm)=+=则各臂长度分布如下: (mm) (mm) (mm) (mm)第一节臂 1785 第二节臂 1735 1438 1188 297第三节臂 1685 1398 1148 287则吊臂实际最大工作幅度:=(1785+1438+1398)mm=4621mm箱型吊臂长度尺寸图如下:图3-1 各臂长度分布则基本臂工作长度=(1785+2a)mm=(1785+2x25)mm=2285mm最大起升质量为2000kg则起重力矩 M=2t x 2.285m=4.57tm各臂额定起升重量:基本臂 =2000kg第二节臂 =1000kg第三节臂 kg3.2吊臂截面的选择随车起重机伸缩吊臂的材料一般为16Mn,最好采用高强度的低合金钢HQ60。伸缩臂的箱形截面一般为矩形,其高宽比一般在1.31.8范围内。侧板一般选用薄钢板,厚度在3.26mm范围内,侧板薄一些对于减轻吊臂重量极为有效。随车起重机伸缩形吊臂的重量一般占整机重量的13%20%。减轻吊臂重量,增大吊臂刚度是改善起重机性能的重要途径。采用高强度钢材固然有效,但合理地确定载荷,合理的选择截面形状和正确的进行设计计算也很重要。有的为了减轻重量也可在侧板上开大孔,并卷边加强,但必须认真考虑局部失稳的问题,也可在钢板上隔一定距离轧一根横向筋,以增加其刚度。下底板一般做的比上盖板厚些,一方面可以使截面中性轴下移,从而减少下底板的压缩应力,另一方面满足下底板局部稳定的需要。为了减轻自重,吊臂尽量做成等强度梁。整个箱形吊臂也可做成头稍细,根稍粗的棱椎体。但大多数采用贴加强板的方法来改变截面的面积特性。在局部高应力处采用加强板局部加强。矩形的箱形截面最危险处为四角焊缝处,该处应力最大,也是最易产生应力集中之处。为了改善应力状况,可以采用其他截面形式。同时看到,在钢材相同,截面积也相同时,不同的截面形式可得到不同的抗弯模量和不同的抵抗局部失稳的能力。较合理的截面形式为椭圆和八角形。各种不同截面形式有矩形、正梯形、倒梯形、八角形、椭圆形、大圆角形、五角形、槽形、角钢组合形和五边形。梯形截面的横向抗弯刚度和抗扭刚度比矩形的好。正梯形侧板的上半部拉应力较大,提高了侧板的稳定系数。倒梯形的下底板窄,可以避免下底板的局部失稳(这常是吊臂破坏的主要原因)吊臂截面下部分做成圆形,或其他折线状,都是为了提高下底板的抗局部失稳能力,和减小侧板的计算宽度。这样一来可采用更薄的钢板(4.53.2mm)而充分利用钢板的强度,特别在采用高强度钢材时。因为高强度钢板的抗局部失稳能力并不比普通钢板高,所以改善局部稳定在此就显得更为重要。角钢组合式截面正像桁架臂弦杆那样,将材料集中在四个受力最大的角上。同时,将焊缝移至中部,大大改善应力集中现象。侧板上冲压棱形孔,一方面减轻吊臂重量,另一方面将侧板变成腹杆,回避了板的局部稳定问题。但是,该截面工艺性复杂,制造成本较高。除了八角形、椭圆形、大圆角形和槽形截面以外其余截面在传递扭转和横向力时都有另置侧向滑块支承。另外,滑块支承在盖板上,或侧板正下方时,将产生附加局部弯曲,或局部压缩,对板的稳定不利。所以在截面为八角形、椭圆形、大圆角形、槽形和角钢组合式等形式中避免了这种不利因素。吊臂不同部位可以采用不同强度的钢材,以充分发挥钢材作用,如上盖板用高强度,下底板用普通钢。吊臂截面的计算箱形结构的截面特性: 图3-2 伸缩臂截面图(上盖板厚度=3mm 底板厚度=5mm 侧板厚度=4mm)表3-1 箱型结构的截面特性项 目公式面积F+2,=b,=b,=h中心轴位置yy=面积惯性矩=+=上部抗弯模量=下部抗弯模量=横向抗弯模量=中心线包容面积=bh随车起重机箱形吊臂的支承情况是:其根部与回转台由水平轴销相连,可以在垂直平面内(即变幅平面)内自由传动。其基本臂的后半部支承着变幅油缸。单变幅油缸位于吊臂下方,其支承处可做成双向球铰接,以使其在横向对吊臂不加任何约束。因此吊臂在变幅平面内可视为一外伸梁,而在吊臂横向平面内(即回转切向平面)可视为悬臂梁,在根部固接,如下图所示:图3-3吊臂在变幅平面内的支承情况图3-4吊臂在回转切向平面内的支承情况作用在吊臂上的外载荷有自重、吊重、惯性力和风力等。吊臂的自重力是一铅垂的分布载荷。在计算中往往假定每节臂是等截面的,考虑其搭接部分,则第i节臂段的自重均布载荷可认为是: 式(3.2)式中 第i节臂(或第i+1节臂)和在其臂内的那部分伸缩机构的总重量; 各节臂的外伸长度;。 搭接长度。为简化计算,在计算吊臂zz截面上弯矩时,可把自重视为作用在吊臂端部的集中载荷为: 式(3.3)用此值求得该截面的弯矩和用均布载荷求得的显然相同。当计算吊臂端部挠度时,与均布载荷等效的集中载荷值为3/8,但考虑到吊臂是端部轻,根部重的情况,其等效的集中载荷可近似地取: 式(3.4)当校核由吊臂自重力引起的压杆稳定时,可将均布自重力( )转化为等效的端部集中力,其转化系数按临界力之比来确定。=1/3= 式(3.5)式中 整个吊臂和其伸缩机构的总自重; l 吊臂的总长度; 重量转化系数。在计算箱形吊臂时,不考虑自重的动力影响(即冲击系数取1)因为工作时,吊臂在滚动轴承式支承装置上的运动速度不大,而又较平稳之故。吊重载荷是一铅垂的集中载荷,作用在吊臂端部,在强度计算时要考虑其动力影响,当起重量为Q,吊钩重量为q(吊钩钩号05,重量16kg),其值为(Q+q).动力系数与吊重物升降速度、起升制动时间及吊臂刚度等有关。建议在中小型起重机上,因工作速度较高取=1.25.动载荷系数的一般表示为:= a + bv 式(3.6)式中 v 重物升降速度(m/min); a、b 与吊臂刚度,起制动时间有关,用振动理论可导出其结果。但实测中得到的更为符合实际情况。惯性力在此主要指水平惯性力,因为垂直的惯性力已在自重和吊重的的动力系数中考虑了。由于变幅速度较慢,吊臂自重引起的水平惯性力和由于回转运动产生的离心力都很小。同时此两力均位于变幅平面内,与吊臂载荷相比其值甚微,故可忽略。在吊臂变幅平面内,吊臂端部作用有外力,考虑动力系数的吊重物重量,起升绳拉力,分布的吊臂自重载荷。转化到吊臂端部:N= , 式(3.7)在吊臂回转切向平面内吊臂端部还作用有由于各种原因引起的吊重物偏摆的水平载荷,以及由吊臂自重引起的切向惯性力等,载荷化简为N= 式(3.8)另外在吊臂截面平面内,还作用有扭矩,其值为:= 式(3.9)式中 i 吊钩滑轮组的倍率取3; 滑轮组效率取98%; 起升绳导向滑轮轴心和吊钩定滑轮轴心到吊臂中轴线的距离; 均布载荷的转化系数,视计算对象分别用、或代入 惯性力的转化系数,一律用0.002R代入截面上轴向压力一般情况下,伸缩式吊臂的轴向压力由伸缩缸直接承受。但由于各节臂搭接处滑块上的摩擦阻力,吊臂本身也承担一定的轴向压力,按实测=1/3. 截面上弯矩和 从图上可见,在截面xz上的和分别为: 截面上的剪力和 当截面在吊臂各节中部时,剪力T即为端部的横力H。即: 截面上的扭矩考虑到吊臂的变形,离吊臂根部z处截面上的扭矩为 式(3.10)式中 和 吊臂端部的挠度,其计算方法见挠度计算。若简化计算,而误差又不大,上式可写成:用二阶应力理论的强度验算公式设吊臂任意截面上作用由弯矩和,扭矩,轴向压力和剪力和,若箱形截面的面积为F,抗弯模量为、,则任一截面的最大压应力和最大拉应力= 式(3.11)截面上的剪应力: 式(3.12)式中 分别为上盖板、下底板和侧板上的剪应力; 箱体中心线包容面积若截面上作用有局部集中力,如伸缩吊臂的导向滑块处,上、下盖板在边棱附近产生附加的局部弯曲纵向应力,因为是局部的一般又较小故可忽略不计。当不太小时也可按一个半经验公式计算其局部弯曲应力 式(3.13)式中 材料泊搡比,钢材取0.3; 导向滑块中心离侧板中心的距离,此距离越小越好; P 导向滑块传递的集中力。吊臂截面上的最大拉或压的组合应力可按第四强度理论写出: 式(3.14)式中1.1系数是考虑到组合应力的局部性而将许应应力提高10%。当忽略局部应力时,公式改为:远离滑块支承处的吊臂截面时,因为没有局部弯曲应力,同时再忽略不大的剪应力,则验算公式可写成: 式(3.15)随车起重机伸缩吊臂的工作类型属于轻型,一般情况下可不验算其疲劳。由于吊臂可伸缩,故也不必验算非工作状态下的强度。因此,只要按工作状态下的最大载荷来作强度计算即可,在这种情况下,吊臂材料(HQ60 =450MPa =590MPa)的许应应力和安全系数如下:表3-2安全系数受力情况结构件焊接拉、压、弯=338MPa=368MPa同结构件剪切=195MPa=239MPa挤压=基本臂的设计第一节臂(h=206mm, b=136mm)的截面特性:面积F +2=(408+680+2842)=2736=b=(1363) =408,=b=(1365) =680,=h=(2064) =824中心轴位置y y=面积惯性矩 =+=17084 =9297上部抗弯模量 =149下部抗弯模量 =179横向抗弯模量 =136中心线包容面积 =bh=28016 基本臂Z=0.4m处:N= = =31470N, = =10758N=1835=108=995N=基本臂臂最大压应力和最大拉应力= = 截面上的剪力:截面上扭矩截面上的剪应力: 吊臂截面上的最大拉或压的组合应力可按第四强度理论写出:由于、都较小,上式简化成:由计算可知、。臂安全3.2.2第二节臂(h=190mm, b=120mm)的设计面积F 中心轴位置y 面积惯性矩 中心线包容面积 =bh=22800mm下部抗弯模量 横向抗弯模量 上部抗弯模量 第二节臂Z=1.785m=31244N,=10652N第二节臂最大压应力和最大拉应力截面上的剪力:截面上扭矩截面上的剪应力: = = = 吊臂截面上的最大拉或压的组合应力可按第四强度理论写出:由于、都较小,上式简化成:由计算可知、。臂安全3.2.3第三节臂的设计(h=178mm, b=108mm)面积F +2=(384+640+2792)=2608=b=(1043)=312=h=(1045)=696=b=(1744)=520中心轴位置y y=65mm面积惯性矩 =+=10089=4059上部抗弯模量 =91中心线包容面积 =bh=11310横向抗弯模量 =75下部抗弯模量 =150第三节臂Z=3.223m处:N= =31173N, = =10619N=1835=108=995N=第三节臂最大压应力和最大拉应力= 截面上扭矩截面上的剪应力:= = =吊臂截面上的最大拉或压的组合应力可按第四强度理论写出:由于、都较小,上式简化成:由计算可知、。臂安全3.3耳板及轴销的设计耳板材料为HQ60(),厚度粗定为10mm,轴销材料为20号钢(),直径分别为:二板处60mm、与立柱铰接处60mm、挂钩处40mm。校核过程如下:3.3.1耳板校核耳板受轴销的挤压,在铰接处不被压溃即可满足设计需要,基本臂受力情况如下图所示,由力矩平衡求得、的值:耳板处受力如下图示:轴为双剪切耳板被挤压。图3-5 轴受力分析安全安全3.3.2立柱与基本臂铰接处轴的校核安全 4 液压系统的设计4.1变幅油缸的设计4-1 变幅系统图液压缸缸体的常用材料为20、35、45号无缝钢管。因20号钢的力学性能略低,且不能调质,应用较少。当缸筒与缸底、缸头、管接头或耳轴等件需焊接时,则应采用焊接性能较好的35钢,粗加工后调质。一般情况下,均采用45钢,并应调质到241285HB。缸体毛坯也可采用锻钢、铸钢或铸铁件。铸钢可采用ZG35B等材料,铸铁可采用HT200HT350间的几个牌号或球墨铸铁。特殊情况下,可采用铝合金等材料。(1) 缸体的技术要求缸体内径采用H8、H9配合。表面粗糙度:当活塞采用橡胶密封圈密封时,尺寸为0104lm,当活塞用活塞环密封的情况。缸体内径的圆度公差值可按9、10或11级精度选取,圆柱度公差值应按8级精度选取。缸体端面了的垂直度公差值可按7级精度选取。当缸体与缸头采用螺纹联接时,螺纹应取为6级精度的米制螺纹。当缸体带有耳环或销轴时,孔径0:或轴径d:的中心线对缸体内孔轴线的垂直度公差值应按9级精度选取。为了防止腐蚀和提高寿命,缸体内表面应镀以厚度为3040mm的铬层,镀后进行珩磨或抛光。(2) 缸盖缸盖的材料用ZG45铸钢或HT200、HT300、HT350铸铁等材料。变幅油缸为单杆活塞式液压缸,推力为: 式(4.1)式中 液压缸推力(kN); 工作压力(Mpa); 活塞的作用面积();; 活塞直径(m)液压缸内径的计算:根据载荷的大小和选定的系统压力计算液压缸内径D活塞杆直径d的计算:根据速度比的要求来计算活塞杆直径d:式中 活塞杆直径(m); D 液压缸直径(m); 速度比(工作压力F=12.520MPa时,取1.46)缸筒壁厚的选择:由工程机械用液压缸外径系列选外径121mm,壁厚10.5mm。4.2泵的选择液压泵是将原动机的机械能转换为液压能的能量转换元件、液压泵作为液压元件向液压系统提供具有压力和流量的流体,即液压能。(1) 液压泵的分类:分为齿轮泵,柱塞泵,叶片泵等。(2) 液压泵的主要技术参数a)泵的排量(mLr) 泵每旋转一周、所能排出的液体体积。b)泵的理论流量(Lmln) 在额定转数时、用计算方法得到的单位时间内泵能排出的最大流量。c)泵的额定流量(Lmm) 在正常工作条件下;保证泵长时间运转所能输出的最大流量。d)泵的额定压力(MPa) 在正常工作条件下,能保证泵能长时间运转的最高压力。e)泵的最高压力(MPa) 允许泵在短时间内超过额定压力运转时的最高压力。f)泵的额定转数(rmln) 在额定压力下,能保证长时间正常运转的最高转数。g)泵的最高转数(rmin) 在额定压力下,允许泵在短时间内超过额定转速运转时的最高转数。h)泵的容积效率() 泵的实际输出流量与理论流量的比值。i)泵的总效率() 泵输出的液压功率与输入的机械功率的比值。j)泵的驱动功率(kW) 在正常工作条件下能驱动液压泵的机械功率。由液压系统选择CB外啮合单级齿轮泵,排量为28mLr,泵的额定压力14 Mpa,泵的最高压力17.5Mpa,泵的总效率95。4.3箱型吊臂伸缩机构图4-2差积式顺序伸缩原理图 图4-2是利用各油缸有效面积差控制伸缩顺序的一种方案。这里各油缸的活塞腔是连通的,各油箱的活塞杆也是连通的。显然,油缸的伸缩顺序将取决于各腔的有效面积以及各缸的伸缩阻力。结论本次毕业设计是大学所学知识的全面应用和检测,它使我对产品的先期调研、设计方案的提出、到最终设计的完成有了比较理性的认识,为以后的工作打下了基础,积累了经验。我设计完随车起重机的上车部分,设计中采用了现在市场上比较常见的矩形吊臂,并计算选择了合适的尺寸,结合下车部分进行了泵的设计;参照了徐工集团的吊臂尺寸,利用变幅油缸带动各节伸臂的水平油缸的啮合,达到随车起重机的变幅要求。在每节臂中留有安装距离和外露长度,结合最大幅度和基本臂长度及在两种情况下的起重质量,使计算每节臂的长度简单化。在确定每节臂的截面时,底板,侧板,上盖板均采用低合金高强度钢HQ60,且各板厚度不同,有利于减轻臂的质量及充分发挥材料性能,这也是随车起重机向大幅度,大起重力矩方向发展的方法。顺利如期的完成本次毕业设计给了我很大的信心,让我了解专业知识的同时也对本专业的发展前景充满信心,但也存在一定的不足,这点不足在一定程度上限制了我们的创造力。比如我的设计在防倾翻及过载报警上有一定的不足,这也是国产随车起重机与国外产品的一大差距。在随车起重机操纵上采用最原始的手动操纵,这与人性化设计和操作的理念相差太远,这也是我国随车起重机设计师应该仔细考虑的问题。致谢 此外,从一个起重机大国,到一个起重机强国,对每一位业内人士而言,都应该是一种压力和希望。国内市场的开放,并不是在增加国内企业迈过这道坎的难度。而相反,若没有开放、平等竞争的市场环境,若不能真正融入世界行业的发展潮流,中国起重机行业就难以真正做大做强,难以成就一个起重机强国的梦想。我的毕业设计已经完成,我要感谢我的指导老师李清伟老师,在这段时间内他给了我很大的帮助,正由于他的热心地帮助和指导,我的毕业设计才能够顺利的完成。李老师严谨治学的态度和精神也是我在这次设计过程中学到的有用的经验。感谢与我共同走过大学的朋友们、同学们!参考文献1湖北汽车学院.随车起重机新机型D.湖北:中国汽车工业出版社,2003.2谢开泉.前置式随车起重运输汽车的总体设计J.广西机械,2000,(3):33-36.3徐斌.QY25型随车起重机设计D.大连理工大学,2004.4朱文坚.黄平,吴昌林.机械设计M.北京:高等教育出版社,2005.5徐新才.机械设计手册M.北京:机械工业出版社,1992.6李壮云,葛宜远.液压元件与系统M.北京:机械工业出版社,2000.7朱宏涛.液压与气压传动M.北京:清华大学出版社,2005.8杜国森.液压元件产品样本M.北京:机械工业出版社,2000.9顾迪民.工程起重机M.北京:中国建筑工业出版社,1981.10Charles.Wilson.Kinematics and Dynamics of MachineryJ.New York,2000, (6):120-132.附录附录1 英文原文Introduction to Fluid Power1.1WHAT IS FLUID POWER?Fluid power is the technology that deals with the generation, control, and transmission of power-using pressurized fluids. It can be said that fluid power is the muscle that moves industry. This is because fluid power is used to push, pull, regulate, or drive virtually all the machines of modern industry. For example, fluid power steers and brakes automobiles, launches spacecraft, moves earth, harvests crops, mines coal, drives machine tools, controls airplanes, processes food, and even drills teeth. In fact, it is almost impossible to find a manufactured product that hasnt been “fluid-powered” in some way at some stage of its production or distribution.Since a fluid can be either a liquid or a gas, fluid power is actually the general term used for hydraulics and pneumatics. Hydraulic systems use liquids such as petroleum oils, water, synthetic oils, and even molten metals. The first hydraulic fluid to be used was water because it is readily available. However, water has many deficiencies. It freezes readily, is a relatively poor lubricant, and tends to rust metal components. Hydraulic oils are far superior and hence are widely used in lieu of water. Pneumatic systems use air as the gas medium because air is very abundant and can be readily exhausted into the atmosphere after completing its assigned task.It should be realized that there are actually two different types of fluid systems: fluid transport and fluid power.Fluid transport systems have as their sole objective the delivery of a fluid from one location to another to accomplish some useful purpose. Examples include pumping stations for pumping water to homes, Cross-country gas lines, and systems where chemical processing takes place as various fluids are brought together.Fluid power systems are designed specifically to perform work. The work is accomplished by a pressurized fluid bearing directly on an operating fluid cylinder or fluid motor. A fluid cylinder produces a force, whereas a fluid motor produces a torque. Fluid cylinders and motors thus provide the muscle to do the desired work. Of course, control components are also needed to ensure that the work is done smoothly, accurately, efficiently, and safely.Liquids provide a very rigid medium for transmitting power and thus can provide huge forces to move loads with utmost accuracy and precision. On the other hand, pneumatic systems exhibit spongy characteristics due to the compressibility of air. However, pneumatic systems are less expensive to build and operate. In addition, provisions can be made to control the operation of the pneumatic actuators that drive the loads.Fluid power equipment ranges in size from huge hydraulic presses to miniature fluid logic components used to build reliable control systems.How versatile is fluid power? In terms of brute power, a feather touch by an operator can control hundreds of horsepower and transmit it to any location where a hose or pipe can go. In terms of precision such as applications in the machine tool industry, tolerances of one ten-thousandth of an inch can be achieved and repeated over and over again. Fluid power is not merely a powerful muscle; it is a controlled, flexible muscle that provides power smoothly, efficiently, safely, and precisely to accomplish useful work.Figure 1-1 shows a pneumatically controlled dextrous hand designed to study machine dexterity and human manipulation in applications such as robotics and tactile sensing. Servo-controlled pneumatic actuators give the hand human-like grasping and manipulating capability. Key operating characteristics include high speed in performing manipulation tasks, strength to easily grasp hand-sized objects that have varying densities, and force grasping control. The hand possesses three fingers and an opposing thumb, each with four degrees of freedom. Each joint is positioned by two pneumatic actuators (located in an actuator pack with the controlling servo valve) driving a high-strength tendon. Performance and configuration constraints concerning the weight, size, geometry, cleanliness, and availability of individual actuators led to the choice of pneumatic actuation.1.2HISTORY OF FLUID POWERFluid power is probably as old as civilization itself. Ancient historical accounts show that water was used for centuries to produce power by means of water wheels, and air was used to turn windmills and propel ships. However, these early uses of fluid power required the movement of huge quantities of fluid because of the relatively low pressures provided by nature.Fluid power technology actually began in 1650 with the discovery of Pascals law: Pressure is transmitted undiminished in a confined body of fluid.Pascal found that when he rammed a cork down into a jug completely full of wine, the bottom of the jug broke and fell out. Pascals law indicated that the pressures were equal at the top and bottom of the jug. However, the jug has a small opening area at the top and a large area at the bottom. Thus, the bottom absorbs a greater force due to its larger area.In 1750, Bernoulli developed his law of conservation of energy for a fluid flowing in a pipeline. Pascals law and Bernoullis law operate at the very heart of all fluid power applications and are used for analysis purposes. However, it was not until the Industrial Revolution of 1850 in Great Britain that these laws would actually be applied to industry. Up to this time, electrical energy had not been developed to power the machines of industry. Instead, it was fluid power that, by 1870, was being used to drive hydraulic equipment such as cranes, presses, winches, extruding machines, hydraulic jacks, shearing machines, and riveting machines. In these systems, steam engines drove hydraulic water pumps, which delivered water at moderate pressures through pipes to industrial plants for powering the various machines. These early hydraulic systems had a number of deficiencies such as sealing problems because the designs had evolved more as an art than a science.Then, late in the nineteenth century, electricity emerged as a dominant technology. This resulted in a shift of development effort away from fluid power. Electrical power was soon found to be superior to hydraulics for transmitting power over great distances. There was very little development in fluid power technology during the last 10 yr of the nineteenth century.The modern era of fluid power is considered to have begun in 1906 when a hydraulic system was developed to replace electrical systems for elevating and controlling guns on the battleship USS Virginia. For this application, the hydraulic system developed used oil instead of water. This change in hydraulic fluid and the subsequent solution of sealing problems were significant milestones in the rebirth of fluid power.In 1926 the United States developed the first unitized, packaged hydraulic system consisting of a pump, controls, and actuator. The military requirements leading up to World War II kept fluid power applications and developments going at a good pace. The naval industry had used fluid power for cargo handling, winches, propeller pitch control, submarine control systems, operation of shipboard aircraft elevators, and drive systems for radar and sonar.During and after World War lithe aviation and aerospace industry provided the impetus for many advances in fluid power technology. Examples include Hydraulic-actuated landing gears, cargo doors, gun drives, and flight control devices such as rudders, ailerons, and elevons for aircraft. Figure 1-2 shows the space shuttle Columbia, powered by fluid thrust forces, soaring from its launch pad. The space shuttle takes off like a rocket and the winged orbiter then maneuvers around Earth like a spaceship. After completing its mission it lands on a runway like an airplane. Unlike earlier manned space craft, which were good for only one flight, the shuttle orbiter and rocket boosters can be used again and again. Only the external tank is expended on each launch. Figure 1-3 provides a cutaway view of the shuttle vehicle, identifying its main components, many of which are hydraulically actuated.The expanding economy that followed World War II led to the present situation where there are virtually a limitless number of fluid power applications. Today fluid power is used extensively in practically every branch of industry. Some typical applications are in automobiles, tractors, airplanes, missiles, boats, and machine tools. In the automobile alone, fluid power is utilized in hydraulic brakes, automotive transmissions, power steering, power brakes, air conditioning, lubrication, water coolant, and gasoline pumping systems. The innovative use of modern technology such as electro-hydraulic closed-loop systems, microprocessors, and improved materials for component construction will continue to advance the performance of fluid power systems.Relative to automotive applications, Fig. 1-4 is a diagram showing the Bendix Hydro-Boost Power Brake System. The basic system consists of an open center spool valve and hydraulic cylinder assembled in a single unit (see Fig. 1-5). Operating pressure is supplied by the power steering pump. Hydro-Boost provides a power assist to operate a dual master-cylinder braking system. Normally mounted on the engine compartment fire wall, it is designed to provide specific “brake-feel” characteristics throughout a wide range of pedal forces and travel. A spring accumulator stores energy for reverse stops. From one to three stops are available depending on the magnitude and duration of the brake application. This system was developed by Bendix Corporation as an answer to crowded engine compartments and replaces the large vacuum units.1.3ADVANTAGES OF FLUID POWERThere are three basic methods of transmitting power: electrical, mechanical, and fluid power. Most applications actually use a combination of the three methods to obtain the most efficient overall system. To properly determine which principle method to use, it is important to know the salient features of each type. For example, fluid systems can transmit power more economically over greater distances than can mechanical types. However, fluid systems are restricted to shorter distances than are electrical systems.The secret of fluid powers success and widespread use is its versatility and manageability. Fluid power is not hindered by the geometry of the machine, as is the case in mechanical systems. Also, power can be transmitted in almost limitless quantities because fluid systems are not so limited by the physical limitations of materials as are the electrical systems. For example, the performance of an electromagnet is limited by the saturation limit of steel. On the other hand, the power capacity of fluid systems is limited only by the physical strength of the material (such as steel) used for each component.Industry is going to depend more and more on automation in order to increase productivity. This includes remote and direct control of production operations, manufacturing processes, and materials handling. Fluid power is the muscle of automation because of advantages in the following four major categories.1. Ease and accuracy of control. By the use of simple levers and push buttons, the operator of a fluid power system can readily start, stop, speed up or slow down, and position forces that provide any desired horsepower with tolerances as precise as one ten-thousandth of an inch. Figure 1-6 shows a fluid power system that allows an aircraft pilot to raise and lower his landing gear. When the pilot moves a small control valve in one direction, oil under pressure flows to one end of the cylinder to lower the landing gear. To retract the landing gear, the pilot moves the valve lever in the opposite direction, allowing oil to flow into the other end of the cylinder.2. Multiplication of force. A fluid power system (without using cumbersome gears, pulleys, and levers) can multiply forces simply and efficiently from a fraction of an ounce to several hundred tons of output. Figure 1-7 shows an application where a rugged, powerful drive is required for handling huge logs. In this case, a turntable, which is driven by a hydraulic motor, can carry a 20,000-lb load at a loft radius (a torque of 200,000 ft ib) under rough operating conditions.3. Constant force or torque. Only fluid power systems are capable of providing constant force or torque regardless of speed changes. This is accomplished whether the work output moves a few inches per hour, several hundred inches per minute, a few revolutions per hour, or thousands of revolutions per minute. Figure 1-8 depicts an application in oceanography that involves the exploration and development of the oceans resources for the benefit of humankind. In this instance, it is important for the operator to apply a desired constant grabbing force through the use of the grappling hooks.4. Simplicity, safety, economy. In general, fluid power systems use fewer moving parts than comparable mechanical or electrical systems. Thus, they are simpler to maintain and operate. This, in turn, maximizes safety, compactness, and reliability. Figure 1-9 shows a power steering control designed for off-highway vehicles. The steering unit (shown attached to the steering wheel column in Fig. 1-9) consists of a manually operated directional control valve and meter in a single body. See Fig. 1-10 for a cutaway of this steering unit. Because the steering unit is fully fluid-linked, mechanical linkages, universal joints, bearings, reduction gears, etc., are eliminated. This provides a simple, compact system. In addition, very little input torque is required to produce the control needed for the toughest applications. This is important where limitations of control space require a small steering wheel and it becomes necessary to reduce operator fatigue. The compact design and versatility of the control system allow the unit to control many large and high-powered systems with a high degree of reliability. The steering unit shown in Fig. 1-10 contains a check valve that converts the unit to a hand-operated pump for emergency power-off steering.Additional benefits of fluid power systems include instantly reversible motion, automatic protection against overloads, and infinitely variable speed control. Fluid power systems also have the highest horsepower-per-weight ratio of any known power source.Drawbacks of Fluid PowerIn spite of all these highly desirable features of fluid power, it is not a panacea for all power transmission problems. Hydraulic systems also have some drawbacks. Hydraulic oils are messy, and leakage is impossible to eliminate completely. Hydraulic lines can burst, possibly resulting in injuries to people due to high-speed oil jets and flying pieces of metal, if proper design is not implemented. Prolonged exposure to loud noise such as that emanating from pumps, can result in loss of hearing. Also, most hydraulic oils can cause fires if an oil leak occurs in an area of hot equipment. Therefore, each application must be studied thoroughly to determine the best overall design. It is hoped that this book will not only assist the reader in developing the ability to make these types of system selection decisions but also present in a straightforward way the techniques for designing, analyzing, and troubleshooting basic fluid power systems.1.4APPLICATIONS OF FLUID POWERAlthough a number of cases of fluid power have already been presented in this chapter, the following additional applications should give the reader a broader view of the widespread use of fluid power in todays world.1. fluid power drives high-wire overhead tram. Most overhead trams require a haulage or tow cable to travel up or down steep inclines. However, the 22-passenger, 12,000-lb hydraulically powered and controlled Sky-tram shown in Fig. 1-11 is unique. It is self-propelled and travels on a stationary cable. Because the tram moves instead of the cable, the operator can stop, start, and reverse any one car completely independently of any other car in the tram system. Integral to the design of the Sky-tram drive is a pump (driven by a standard eight-cylinder gasoline engine), which supplies pressurized fluid to four hydraulic motors. Each motor drives two friction drive wheels.Eight drive wheels on top of the cables support and propel the tram car. On steep inclines, high driving torque is required for ascent and high braking torque for descent. Dual compensation of the four hydraulic motors provides efficient proportioning of available horsepower to meet the variable torque demands.2.fluid power is applied to harvesting corn. The worlds dependence on the United States for food has resulted in a great demand for agricultural equipment development. Fluid power is being applied to solve many of the problems dealing with the harvesting of food crops. Figure 1-12 shows a hydraulically driven elevator conveyor system, which is used to send harvested, husked ears of corn to a wagon trailer. Mounted directly to the chain-drive conveyor, a hydraulic motor delivers full-torque rotary power from start-up to full rpm.3Hydraulics power brush drives. Figure 1-13 shows a fluid powerdriven brush drive used for cleaning roads, floors, etc., in various industrial locations. Mounted directly at the hub of the front and side sweep-scrub brushes, compact hydraulic motors place power right where its needed. They eliminate bulky mechanical linkages for efficient, lightweight machine design. The result is continuous, rugged industrial cleaning action at the flip of a simple valve.4.fluid power positions and holds parts for welding. In Fig. 1-14, we see an example of a welding operation in which a farm equipment manufacturer applied hydraulics for positioning and holding parts while welding is done. It is a typical example of how fluid power can be used in manufacturing and production operations to reduce costs and increase production. This particular application required a sequencing system for fast, positive holding. This was accomplished by placing a restrictor (sequence valve) on the flow of oil in the line leading to the second of the two cylinders (rams), as illustrated in Fig. 1-15. The first cylinder extends to the end of its stroke. Oil pressure then builds up, overcoming the restrictor setting, and the second cylinder extends to complete the “hold” cycle. This unique welding application of hydraulics was initiated to increase productivity by making more parts per hour. In addition, the use of hydraulics reduced scrap rates and operator fatigue as well as increasing productivity from 5 pieces per shift to more than 20a 400 % increase.5.Fluid power performs bridge maintenance. A municipality had used fluid power for years as a means for removing stress from structural members of bridges, making repairs, and replacing beams. As many as four or five bulky, low-pressure hand pumps and jacking ram setups were used to remove stress from beams needing replacement. Labor costs were high, and no accurate methods existed for recording pressures. An excessive downtime problem dictated that a new system be designed for the job. A modern fluid power system was designed that located several 100-ton rams on the bridge structure, as illustrated in Fig. 1-16. One portable pump was used to actuate all of the rams by the use of a special manifold. This made it easy to remove stress from members needing repair or replacement. This new fluid power system cut the setup time and labor costs for each repair job to one-third that required with the hand pump and jacking ram setups previously used6.Fluid power is the muscle in industrial lift trucks. Figure 1-17 shows an industrial hydraulic lift truck with a 5000-lb capacity. The hydraulic system includes dual-action tilt cylinders and a hoist cylinder. Tilting action is smooth and sure for better load stability and easier load placement. A lowering valve in the hoist cylinder controls the speed of descent even if the hydraulic circuit is broken. Hydrostatic power steering is available as an optional feature.7. Fluid power drives front-end loaders. Figure 1-18 shows a front-end loader filling a dump truck with soil scooped up by a .large hydraulic-powered bucket. Excellent load control is made possible with a specially designed flow control valve. The result is low effort and precise control; this keeps the operator working on the job longer and more efficiently. Thus, reduced operator fatigue results in increased production8. Hydraulics power robotic dextrous arm. Figure 1-19 shows a hydraulically powered robotic arm that has the strength and dexterity to torque down bolts with its fingers and yet can gingerly pick up an eggshell. This robotic arm is adept at using human tools such as hammers, electric drills, and tweezers and can even bat a baseball. The arm has a hand with a thumb and two fingers, as well as a wrist, elbow, and shoulder. It has ten degrees of freedom, including a three-degree-of-freedom end effector (hand) designed to handle human tools and other objects with human-like dexterity. The servo control system is capable of accepting computer or human operator control inputs. The system can be designed for carrying out hazardous applications in the subsea, utilities, or nuclear environments, and it is also available in a range of sizes from human proportions to 6 ft long.1.5COMPONENTS OF A FLUID POWER SYSTEMHydraulic SystemThere are six basic components required in a hydraulic system:1. A tank (reservoir) to hold the liquid, which is usually hydraulic oil.2. A pump to force the liquid through the system.3. An electric motor or other power source to drive the pump.4. Valves to control liquid direction, pressure, and flow rate.5. An actuator to convert the energy of the liquid into mechanical force or torque to do useful work. Actuators can either be cylinders to provide linear motion, as shown in Fig. 1-20, or motors (hydraulic) to provide rotary motion, as shown in Fig. 1-21.6. Piping, which carries the liquid from one location to another.Of course, the sophistication and complexity of hydraulic systems will vary depending on the specific applications. This is also true of the individual components that comprise the hydraulic system. As an example, refer to Fig. 1-22, which shows two different-sized, complete, hydraulic power units designed for two uniquely different applications. Each unit is a complete, packaged power system containing its own electric motor, pump, shaft coupling, reservoir and miscellaneous piping, pressure gages, valves, and other components as required for proper operation. These hydraulic components and systems are studied in detail in subsequent chapters.Pneumatic SystemPneumatic systems have components that are similar to those used in hydraulic systems. Essentially the following six basic components are required for pneumatic systems:1. An air tank to store a given volume of compressed air2. A compressor to compress the air that comes directly from the atmosphere3. An electric motor or other prime mover to drive the compressor4. Valves to control air direction, pressure, and flow rate5. Actuators, which are similar in operation to hydraulic actuators6. Piping to carry the pressurized air from one location to anotherFigure 1-23 shows a compact, self-contained pneumatic power unit complete with tank, compressor, electric motor, and miscellaneous components such as valves, piping, and pressure gages.It should be noted in pneumatic systems that after the pressurized air is spent driving actuators, it is then exhausted back into the atmosphere. On the other hand, in hydraulic systems the spent oil drains back to the reservoir and is repeatedly reused after being repressurized by the pump as needed by the system.1.6CLOSED-LOOP VERSUS OPEN-LOOP SYSTEMSFluid power systems can be either the closed-loop or open-loop type. The following describes these two types of fluid power systems.Closed-Loop SystemA closed-loop system is one that uses feedback. This means that the state of the output from the system is automatically sampled and compared (fed back) to the input or command signal by means of a device called a feedback transducer. If there is a difference between the command and feedback signals, action is taken to correct the system output until it matches the requirement imposed on the system. Closed-loop systems are frequently called servo systems, and the valves used to direct fluid to the actuators are typically called servo valves.Open-Loop SystemAn open-loop system does not use feedback. The output performance of the system therefore depends solely on the characteristics of the individual components and how they interact in the circuit. Most hydraulic circuits are of the open-loop type, which are generally not so complex or so precise as closed-loop systems. This is because any errors such as slippage (oil leakage past seals, the magnitude of which depends on system pressure and temperature) are not compensated for in open-loop systems. For example, the viscosity of a hydraulic fluid decreases (fluid becomes thinner) as its temperature rises. This increases oil leakage past seals inside pumps, which, in turn, causes the speed of an actuator, such as a hydraulic motor, to drop. In a closed-loop system, a feedback transducer (for example, a tachometer, which generates a signal proportional to the speed at which it is rotated) would sense this speed reduction and feed a proportional signal back to the command signal. The difference between the two signals is used to control a servo valve, which would then increase the fluid flow rate to the hydraulic motor until its speed is at the required level.1.7 TYPES OF FLUID POWER CONTROL SYSTEMSFluid power systems are also classified by the type of control system utilized. There are three basic types of fluid power control systems: electrical, fluid logic, and programmable logic. The following is a brief description of each of these three control systems.Electrical Control SystemThis type of fluid power control system is characterized by the fact that the fluid power system interacts with a variety of electrical components for control purposes. For example, electrical components such as pressure switches, limit switches, and relays can be used to operate electrical solenoids to control the operation of valves that direct fluid to the hydraulic actuators. An electrical solenoid control system permits the design of a very versatile fluid power circuit. Automatic machines such as those used in the machine-tool industry rely principally on electrical components to control the hydraulic muscles for doing the required work. The aircraft and mobile equipment industries have also found that fluid power and electricity work very well together, especially where remote control is needed. By merely pressing a simple push-button switch, an operator can control a very complex machine to perform hundreds of machinery operations to manufacture a complete product. An electrically controlled fluid power system can be either of the open-loop or closed-loop type, depending on the precision required.Fluid Logic Control SystemThis type is characterized by the fact that the fluid power system interacts with fluid logic devices instead of with electrical devices for control purposes. Two such fluid logic systems are called “moving-part logic (MPL)” and “fluidics,” which perform a wide variety of sensory and control functions. Fluid logic devices switch a fluid, usually air, from one outlet of the device to another outlet. Hence an output of a fluid logic device is either ON or OFF as it rapidly switches from one state to the other by the application of a control signal.MPL devices are miniature valve-type devices that, by the action of internal moving parts, perform switching operations in fluid logic systems. These MPL devices can be actuated by means of mechanical displacement, electric voltage, or fluid pressure. Figure 1-24 shows an electronic-driven MPL valve that readily interfaces with electric and electronic circuits. This valve converts low-voltage (12 to 24 V) signals into high-pressure (100 psi ) pneumatic outputs. The total travel of the poppet (the only moving part) is a mere 0.007 in. As a result, low power consumption (0.67 W) and long life are major benefits of this design. Additionally, the very fast response time (5-10 ms) and small size make this MPL valve well suited for a wide range of applications in biomedical, environmental test equipment, textile machines, packaging machinery, computerized industrial automation, and portable systems.Figure 1-25 shows how either 8 or 12 of the electronic valves of Fig. 1-24 can be mounted on a manifold card to provide added convenience in interfacing electronics with pneumatics. The self-contained card includes a manifold mount for single air supply, a fully wired circuit board, and instant plug-in with a 25-pin RS-232 connector. This system allows low-voltage signals from controllers, computers, or other sources to operate pneumatic valves with a minimum of piping and hookup.The second fluid logic system, fluidics, utilizes fluid flow phenomena in components and circuits also to perform a wide variety of sensory and control functions. Fluidic components (when kept free of contaminants, which can obstruct critical air passageways) are reliable because they contain no moving parts.Fluidics is an offshoot of fluid power technology and is equivalent to electronics as an offshoot of the technology of electrical power. Just as electronic devices use tiny currents as opposed to the huge currents flowing in electrical power lines, fluidic devices use small flow rates at low pressures in contrast to the high pressure and large flow rates required to operate a huge hydraulic press. Fluidic systems (unlike electrical controls) cannot cause fire hazards due to sparks in a potentially explosive environment. Because they operate with fluids, fluidic components also interface readily within fluid power systems.Programmable Logic Control SystemIn this type, programmable logic controllers (PLCs) are used to control system operation. In recent years, PLCs have increasingly been used in lieu of electromechanical relays to control fluid power systems. A PLC is a user-friendly electronic computer designed to perform logic functions for controlling the operation of industrial equipment and processes. A PLC consists of solid-state digital logic elements for making logic decisions and providing corresponding outputs. Unlike general-purpose computers, a PLC is designed to operate in industrial environments where high ambient temperature and humidity levels may exist. PLCs offer a number of advantages over electromechanical relay control systems. Unlike electro-mechanical relays, PLCs are not hard-wired to perform specific functions. Thus, when system operation requirements change, a software program is readily changed instead of having to physically rewire relays. In addition, PLCs are more reliable, faster in operation, smaller in size, and can be readily expanded.Figure 1-26 shows a PLC-based synchronous lift system used for precise lifting and lowering of high-tonnage objects on construction jobs. Unlike complex and costly electronic lift systems, this hydraulic system has a minimum number of parts and can be run effectively and efficiently by one person. The PLC enables the operator to quickly and easily set the number of lift points, stroke limit, system accuracy, and other operating parameters from a single location. The PLC receives input signals from electronic sensors located at each lift point, and in turn sends output signals to the solenoid valve that controls fluid flow to each hydraulic cylinder to maintain the relative position and accuracy selected by the operator. Because the sensors are attached directly to the load, they ensure more exact measurement of the load movement. The system accommodates a wide range of loads and is accurate to 0.040 in. (1 mm).The PLC unit of this system (see Fig. 1-27) contains a LCD display that shows the position of the load at each lift point and the status of all system operations so the operator can stay on top of every detail throughout the lift. The PLC unit, which weighs only 37 pounds and has dimensions of only 16 in. by 16 in. by 5 in., can control up to eight lifting points. The system diagram is shown in Fig. 1-28, in which components are identified using letters as follows:A: Programmable logic controllerB: Solenoid directional control valveC: Electronic load displacement sensorsD: Sensor cablesE: Hydraulic cylinders with flow control valves to regulate movement.中文翻译液压动力的介绍1.1什么是液压动力?液压动力是应用世代的, 控制以及传递被压液体力量的使用的技术。也可以说动力是移动产业的肌肉。这是因为液压动力被用于推, 拉, 控制, 或驱动实际上现代产业所有机器。例如, 液压动力操舵和闸汽车, 发射航天器, 收获庄稼, 开采煤炭, 驾驶机械工具, 控制飞机, 处理食物, 甚至钻牙。实际上, 几乎不可能发现在某个方面某一阶段不是流压动力 生产或发行的一件工业制造品。因为流体可能是液体也可能是气体, 液压动力实际上是通常规定被使用。液压机构使用液体譬如石油, 水, 综合性油, 甚至熔融金属。水作为第一液压机液体被使用是因为它是简单可利用的。但是, 水有许多缺点。它容易结冰,是相对较差的润滑剂, 并且倾向于锈蚀金属成分。水力油是因为优越性因此被广泛代替水来使用。气动系统使用空气作为气体媒介是因为空气是非常丰富的, 可能容易被用尽而进入大气。我们应该体会,实际上有二不同类型可变的系统: 液压运输和液压动力。液压运输系统它们的唯一宗旨是流体从一个地点到另一个的传递来实现一些有用的目的。例子包括泵站为家庭抽水,连接横穿全国的天然气管道, 并且会从系统化学制品处理发生的地方把各种各样的流体被带来。液压动力系统为进行具体的工作而设计。工作由被一个运行的液压泵或液压马达直接承载的被压液体完成。一个液压泵产生力量, 而一个液压马达产生扭矩。液压泵或液压马达提供力量完成预期的工作。当然, 控制组分也需要必要保证, 工作能被顺利地,准确地, 高效率地, 并且安全地完成。液体为传送力量和因提供巨大的力量来最大准确性和精确度供给一个非常刚性的媒介。另一方面, 气动系统表现出吸水的特征是由于空气的压缩性。而且, 气动系统修造和运行是较不昂贵的,另外用于添加供应可能被做控制驾驶装载气动力学的作动器的操作。液压动力设备排列范围大小从巨大的水力信息到用于建立可靠的控制系统的微型液压逻辑元件。什么是液压动力的多样性?一种多功能多种使用方法的液压动力是根据畜生力量, 是操作员用羽毛接触可能控制上百马力和把它传达给水喉或管子的任一个地点。用精确度譬如应用在机械工具产业, 容忍一英寸的一千分之十可能多次达到和被重复。液压动力不仅仅是一块强有力的系统; 它是受控的, 能顺利地提供力量的灵活地,系统地, 高效率地, 安全地, 并且精确地完成有用的工作。通常显示一只气动力学地受控灵巧手用于设计学习机器手巧和人的操作在应用譬如机器人学和有触觉感觉。伺服气动力学的作动器给类似人手掌握的和操作的能力。关键工作特征包括高速在执行操作任务, 掌握手的力量很容易的估量了有变化的密度的对象, 还有力量掌握控制手拥有三个手指和一个反对的拇指, 每个以四个自由程度。各联接由二台气动力学的作动器安置(位于作动器叠板与控制的伺服阀门) 驾驶高强度腱。表现和配置限制关于重量, 大小, 几何, 洁净, 并且各自的作动器的可及性引导了气动力学的驱动选择。1.2 液压动力的历史液压动力大概是一老的象文明样。古老历史记录可被表明, 是通过水被使用在几个世纪中通过水轮产生力量, 还有空气被使用于转动风车和推进船。但是, 这些对液压动力早期应用同为自然提供的相对低压而需要大量液体。液压动力技术实际上开始在1650 年的帕斯卡定律的发现上: 压力被未衰减地传送于流体的一个约束体上。帕斯卡发现于,当他把软木塞塞入装满水的水罐, 水罐的底部被打破掉下来了。帕斯卡定律表明, 压力在水罐的上面和底部是相等的。但是, 水罐有一个小口和一个大区域在底部。因而, 底部吸收更加巨大的力量作用于它的更大的区域。1750 年, 比牛里发现了在管道中的流动流体能量守恒定律。帕斯卡的定律和比牛里的定律作用在所有液压动力应用的核心和被使用为分析目的。但是, 不是直到1850 的在英国工业革命年, 这些定律对于产业没有实际上的运用。由这时间决定, 电能未被发展供给产业动力机器。 反而, 这时的液压动力在1870 年以前, 被使用于驱驶水力设备譬如起重机, 水轮, 绞盘, 挤压来启动各种各样的机器的机器, 水力起重器, 剪切机器, 还有铆定机器。在这些系统, 蒸汽引擎驱驶水力水泵,以适度压力通过管子投递水作用于工厂设备。这些早期的液压机构有一定数量的缺点譬如密封问题因为设计更演变为艺术而非科学。然后, 在19 世纪, 电作为一种统治技术。这导致开发努力从液压动力转移。电能很快被发现在远距离传动上比动水学优越。因此在19 世纪的最后10 年间液压动力技术有很少发展。现代液压动力液压动力被认为开始于1906年美国弗吉尼亚在战舰上被开发替换电气系统的为举起和控制火炮上的一种液压机的应用, 液体系统开发了废旧石油代替水。这个变化在液压机液体上和密封问题的相应解答是在液压动力的重生的重大里程碑。美国在1926首先开发统一化, 被包装的水力系统包括泵,控制器, 还有制动器。军方要求主导由第二次世界大战被保留的液压动力应用和发展去努力。海军工业使用了液压动力来提升货物, 绞盘, 推进器控制, 水下控制系统, 舰上航空器电梯的操作液压动力技术, 并且为雷达和声纳系统驱动。在世界大战中和之后航空和航天工业的前进提供了动力。例子包括水力开动的起落架, 货物门, 枪驱动, 并且飞行控制从它的发射台设备譬如为航空器的船舵, 飞机辅翼, 还有升降舵补腾飞助翼。它可以显示哥伦比亚空间站由流体推力力量供给动力。 航天飞机象火箭离开并且飞过轨道后更换位置后象太空飞船一样在地球附近环绕。在完成它的使命以后它象飞机一样降落在跑道上。不同于更加早期的只能飞行一次的人造飞行器, 人造卫星和火箭助推器可以多次使用。唯一外在动力被消费在各次发射上。它可以提供航天飞机的一张局部剖视图, 辨认它的主要组分, 以及许多水力开动。跟随着第二次世界大战后经济的发展导致了今天液压动力被广泛地使用在每个实际产业部门。一些典型的应用是在汽车里, 拖拉机, 飞机, 导弹, 船舶, 并且机械工具。在汽车中, 液压动力被运用在水力闸, 汽车传动, 力量指点, 力量闸, 空调, 润滑, 水蓄冷剂, 还有汽油泵装置。对现代技
- 温馨提示:
1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
2: 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
3.本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

人人文库网所有资源均是用户自行上传分享,仅供网友学习交流,未经上传用户书面授权,请勿作他用。