基于proe的蛋糕切片机的设计说明书查重版.doc

基于proe的蛋糕切片机的设计【说明书+CAD+PROE】

收藏

资源目录
跳过导航链接。
基于proe的蛋糕切片机的设计【说明书CADPROE】.zip
基于proe的蛋糕切片机的设计【说明书+CAD+PROE】
基于proe的蛋糕切片机的设计说明书查重版.doc---(点击预览)
基于proe的蛋糕切片机的设计说明书.doc---(点击预览)
A4-销1.DWG---(点击预览)
A4-轴.DWG---(点击预览)
A4-混筒.DWG---(点击预览)
A4-套筒.DWG---(点击预览)
A4-压板.DWG---(点击预览)
A4-从轴.DWG---(点击预览)
A4-主轴.DWG---(点击预览)
A3-支架.DWG---(点击预览)
A3-带轮1.dwg---(点击预览)
A2-带轮2.dwg---(点击预览)
A0-总装配图.dwg---(点击预览)
PROE
设计截图 (2).png---(点击预览)
设计截图 (1).png---(点击预览)
ND}MX1[B5[J]R(6U5ZRVOPV.png---(点击预览)
63_c_screw_hi.prt.1
ch_2_2kw________.prt.1
circlips_for_hole--type_b_gb_gb.prt.1
circlips_for_shaft--type_a_larg.prt.1
dadailun.prt.1
dailun11.prt.1
deep_groove_ball_bearings_gb_ro.prt.1
m10_______1.prt.1
m12x100l____.asm.1
m16_______1.prt.1
none.prt.1
outer_ring_gear_1_hi.prt.1
pidai1.prt.1
pingban.prt.1
product_101850.prt.1
product_10979.asm.1
product_111106.prt.1
product_1666.prt.1
product_21911.prt.1
product_24918.asm.1
product_35880.prt.1
product_38865.prt.1
product_49835.prt.1
product_55167.prt.1
product_69080.prt.1
product_71448.asm.1
product_77719.prt.1
product_85471.asm.1
product_91803.asm.1
product_94800.prt.1
product_97103.prt.1
product_99484.asm.1
su-63x40-p__0-00__cylinder_hi.prt.1
su-63x40_0-0-0__hi.asm.1
su-63__nut_piston_rod_hi.prt.1
su632_hi.prt.1
su_40-63-0_pole_hi.prt.1
SW.STP
SW_log.xml
sw____.asm.1
sw____.asm.2
sw____.asm.3
sw____.asm.4
_13_0__13________2.prt.1
__1.prt.1
__2.prt.1
____-____1.prt.1
____-____2-29569.prt.1
____-____2-92458.prt.1
____-____3.prt.1
____-____5.prt.1
____1.prt.1
____10.prt.1
____11.prt.1
____12.prt.1
____13.prt.1
____14.prt.1
____15.prt.1
____16.prt.1
____17.prt.1
____18.prt.1
____19.prt.1
____1_1_.prt.1
____1_2_.prt.1
____1_3_.prt.1
____2-108293.prt.1
____2-75613.prt.1
____2-77258.prt.1
____20.prt.1
____21.prt.1
____22.prt.1
____23.prt.1
____24.prt.1
____25.prt.1
____26.prt.1
____27.prt.1
____28.prt.1
____3-17295.prt.1
____3-52035.prt.1
____4.prt.1
____4_1_.prt.1
____4_2_.prt.1
____5-113361.prt.1
____5-90595.prt.1
____6-104157.prt.1
____6-44241.prt.1
____6-82504.prt.1
____7-106343.prt.1
____7-39175.prt.1
____8-46455.prt.1
____8-49350.prt.1
____9.prt.1
_____default________.asm.1
______1.prt.1
________1_1_.prt.1
________1_2_.prt.1
________1_3_.prt.1
________2.prt.1
________3.prt.1
________4.prt.1
__________2_1_.prt.1
__________2_2_.prt.1
__________3.prt.1
_______________________________.asm.1
翻译
压缩包内文档预览:(预览前20页/共34页)
预览图 预览图 预览图 预览图 预览图 预览图 预览图 预览图 预览图 预览图 预览图 预览图 预览图 预览图 预览图 预览图 预览图 预览图 预览图 预览图
编号:78150904    类型:共享资源    大小:15.04MB    格式:ZIP    上传时间:2020-05-09 上传人:柒哥 IP属地:湖南
40
积分
关 键 词:
说明书+CAD+PROE 基于proe的蛋糕切片机的设计【说明书+CAD+PROE】 基于 proe 蛋糕 切片机 设计 说明书 CAD
资源描述:

购买设计请充值后下载,,资源目录下的文件所见即所得,都可以点开预览,,资料完整,充值下载可得到资源目录里的所有文件。。。【注】:dwg后缀为CAD图纸,doc,docx为WORD文档,原稿无水印,可编辑。。。具体请见文件预览,有不明白之处,可咨询QQ:12401814

内容简介:
南华大学机械工程学院毕业设计(论文)Study and Improvement for Slice Smoothness in Slicing Machine of Lotus Root De-yong YANG ,Jian-ping HU , En-zhu WEI , Heng-qun LEI ,and Xiang-ci KONG Key Laboratory of Modern Agricultural Equipment and Technology Ministry of Education Jiangsu Province Jiangsu University . Zhenjiang .Jiangsu Province .P.R.China212013Tel.: +86-511-8;Fax:+86-511-8Jinhu Agricultural Mechanization Technology Extension Station . Jinhu countyJiangsu Province .P.R.China 211600Abstract: Concerning the problem of the low cutting quality and the bevel edge in the piece of lotus root, the reason was analyzed and the method of improvement was to reduce the force in the vertical direction of link to knife. 3D parts and assemblies of cutting mechanism in slicing machine of lotus were created under PRO/E circumstance. Based on virtual prototype technology, the kinematics and dynamics analysis of cutting mechanism was simulated with ADAMS software, the best slice of time that is 0.2s0.3s was obtained,and the curve of the force in the vertical direction of link to knife was obtained. The vertical force of knife was changed according with the change of the offset distance of crank. Optimization results of the offest distance of crank showed the vertical force in slice time almost is zero when the offset distance of crank is -80mm. Tests show that relative error of thickness of slicing is less than 10% after improved design, which is able to fully meet the technical requirements. Keywords: lotus root; cutting mechanism; smoothness; optimization 1 Introduction China is a country of producing lotus toot, lotus root system of semi-finished products of domestic consumption and external demand for exports is relatively large. In order to improve efficiency, reduce labor intensity, the group work, drawing on the principle of the artificial slice based on the design and development of a new type of lotus root slice (Bi Wei and Hu Jianping, 2006). This new type of slice solved easily broken cutting, stick knives, hard to clean up and other issues, but the process appears less smooth cutting, and some have a problem of hypotenuse piece of root. In this paper, analyzing cutting through the course of slice knife, the reasons causing hypotenuse was found, and the corresponding improvement of methods was proposed and was verified by the experiments.2 Structure of Cutting Mechanism of Slicing Machine Cutting mechanism of the quality of slice lotus root is the core of the machine, the performance of its direct impact on the quality of slice. Virtual prototyping of cutting mechanism of slice lotus root (Fig.1) was built by using PRO/E, and mechanism diagram of the body is shown in Fig.2. Cutting principle of lotus slicer adopted in the cardiac type of slider-crank mechanism was to add materials inside, which can be stacked several lotus root, lotus root to rely on the upper part of the self and the lower part of the lotus press down, so that it arrives in the material under the surface of the baffle. While slider-crank mechanism was driven by motor, the knife installed on the slider cut lotus root. In the slice-cutting process it was found that parallelism of the surface at both ends of part of piece lotus was not enough, which can not meet the technical requirements for processing.Fig.1 Virtual prototyping of cutting mechanismFig.2 Diagram of cutting mechanism Study and improvement for slice smoothness in slicing machine of lotus root.3 The Cause of the Bevel Edge Uneven thickness and bevel edge of cutting were related with forces on the slice knife in the process of cutting. In accordance with cutting mechanism (Fig.2), without taking into account the friction and weight, the direction of force F of point C was along the link. Force F may be decomposed with a horizontal direction force component and a vertical direction force component. The horizontal force component pushed the knife moving for cutting, but the vertical force component caused the knife moving along the vertical direction. Because of the gap between the slider and the rail, the vertical force component made the blade deforming during the movement, and knife could not move along the horizontal direction to cut lotus root, which caused the emergence of bevel edge. Thus, to reduce or eliminate the vertical force component in the cutting-chip was key to solve the problem of bevel edge and improve the quality of cutting.When crank speed was 6990r/min, the horizontal and vertical direction of the force curve of point C connecting link and the blade hinge are shown in Fig.3 and Fig.4 respectively. As can be seen from the chart, with the crank speed improvement the horizontal and vertical direction of the force in point C also increased. The horizontal force changed relatively stable during 0s0.2s, which was conducive to cutting lotus, but the vertical force increased gradually. The more the vertical force was, the more detrimental to the quality cutting. Fig.3 Horizontal force of CFig.4 Vertical force of C4 Simulation and Optimization If improving flatness of the slicer, the structure was optimized to reduce the vertical force component, so as far as possible the level of cutting blade.When crank speed was 6090r/min the velocity curve and acceleration curve of the knife center of mass are shown in Fig.5 and Fig.6 respectively. According to the speed curve, the speed of the knife center of mass was relatively large in a period of 0.2s0.3s. In accordance with the requirements that the knife should have a higher speed during cutting lotus, so this period time was more advantageous to cutting than other terms. According to acceleration curve. When calculates by one cycle, the acceleration value was relatively quite small in the period of time, 0.15s0.3s compared with other time section. Which indicated that the change of velocity was relatively small, simultaneously the force of inertia was small, and the influence of vibration caused by the force was small to the slicer. Therefore,this period of time, 0.2s0.3s, to cut root piece was advantageous in enhances the cutting quality of lotus root piece.Fig.5 Velocity curve of center of mass of knife Fig.6 Acceleration curve of center of mass of knife Based on the above analysis, the vertical force component between link and the knife was the main reason for bevel edge. According to the characteristics of slider-crank mechanism, reducing the vertical force on the knife in the period of cutting time by altering crank offest was tried to enhance the quality of the cutting. When crank speed was 60r/min, the crank eccentricity was optimized. When the offest of the crank was 40mm, 20mm, 0mm, -20mm, -40mm, -80mm, -120mm respectively, the mechanism was simulated and the vertical force curves under different crank eccentricity were obtained, as shown in Fig.7.Fig.7 vertical force curves in different offest Fig.7 indicates that: When the eccentricity was positive, the vertical force on point C increased gradually in 0.2s0.3s with the increase of crank oddest: When the eccentricity was negative, the force decreased gradually first and then begun to increase along with -80mm. So when the offest was -80mm, the numerical of the force in 0.2s0.3s achieved the minimum and the quality of cutting was the best.When the crank rotated in the other speed, there were the same optimization results. Fig.8 show the curve of vertical force in the offest of 0mm and -80mm when the speed of crank was 80r/min. From the Fig.8 it is obvious that vertical direction of the force of point C in 0.2s0.3s reduced a lot when the eccentricity is -80mm. Therefore, the vertical force could be reduced by optimizing the slider-crank mechanism of eccentricity.Fig.8 Vertical force of C5 Experimental AnalysisThe relative error of thickness of lotus root piece reflects the quality of cutting. Which is generally controlled of 10%. There always existed bevel edge phenomenon and the relative error of thickness was about 15% before structural optimization and improvement, which was difficult to meet the technical requirements. The offset in the slider-crank mechanism was optimized, and its structure was improved according to the results of optimization. After improvement cutting test were done in the conditions of crank speed for 80110r/min and statistical data about the relative error of thickness was shown in Table.1. Four levels were separated in the experiment, three times for each level.Table 1 Relative error of thickness of slicingNOCrank speed (r/min)809010011016.6%6.4% 8.2%9.5%25.3%6.1%8.5%9.2%26.4%7.9%7.9%9.4%Average6.1%6.8%8.2%9.4% It is derived from Table.1 that the relative error of the thickness of slices could meet the technical indicators when the crank speed was 80110r/min, especially in the crank rotation speed 80r/min, 90r/min the relative error of thickness was less than 7%,and high quality was achieved.6 ConclusionThe vertical force component acted on the knife in the process of cutting was the main reason for surface formation and bevel edge, so the key of improving the quality was to reduce the vertical force. Through slice knife and velocity acceleration simulation analysis the best time for slicing, 0.2s0.3s, was obtained. By optimizing the offset of the crank the vertical force during cutting time was greatly reduced when the offset was -80mm. Experiments were made after improving the design of lotus root slicer, which results showed that by changing the offset of the crank, the relative error of the thickness could fully meet the requirements of less than 10%. So the problem was basically solved that the flatness was not ideal and was the issue of bevel edge.1References 1 Wei,B . jianping,H.: Study of lotus root slicing techniques and design of new model,Journal of agricultural mechanization research (12),112-114(2006)(in Chinese)2 Enzhu, w.:the simulation and optimization on the new slicing machine of lotus root based on virtual prototype technology .jiangsu university 2008)in Chinese)3 Ce ,Z .:mechanical dynamics .higher education press1999)4Xiuning ,C.:optimal design of machinery .zhejiang university press1999)5Liping,C.,yunqing,Z.,weiqun,R.: dynamic analysis of mechanical systems and application Guide ADAMS . Tsinghua university press ,Beijing(2005)Page 8 of 8南华大学机械工程学院毕业设计(论文)莲藕切片机切片平滑度的研究和改进杨德勇 胡建平 韦恩铸 雷恒群 孔祥次农业设备和现代技术的国家重点实验室江苏省教育部 江苏大学.江苏.镇江中国 江苏省 212013电话 +86-511-8:传真+86-511-8金湖农业机械化技术推广站中国 江苏省 211600摘要:针对莲藕切削质量不高和莲藕片的斜边问题,通过分析原因,改进的方法就是减少刀在垂直方向的力。在Pro/E的环境下创建了莲藕切片机的3D零件和装配体。基于虚拟样机技术,切片机的运动学和动力学分析是在ADAMS软件模拟实验下实现的,获得最佳的切削时间为0.2s0.3s,并且得到了刀在垂直方向上的力的曲线。刀在垂直方向上的力随着曲柄偏移量的变化而改变。曲柄的偏移量优化结果表明,当曲柄的偏移量为-80mm时,在切削时间里的垂直方向上的力几乎为零。测试结果表明,经过改进设计后,切片厚度的相对误差小于10,这是能够完全满足技术要求的。关键词:莲藕;切削机制;平滑度;优化1前言 中国是一个生产莲藕的大国,莲藕半成品系列食品的国内消费和外部的出口需求量比较大,为了提高工作效率,减轻劳动强度,设计工作组,在借鉴人工切莲藕片原理的基础上设计和开发一个新型的切片机(毕伟,胡建平,2006年)。这种新型的切片机容易解决切片易断,粘刀,难清理等问题,但过程中还是出现不平滑切削和一些斜边的现象。本文通过对切削时刀片的分析,发现了一些造成斜边现象的原因,并提出了相应的改进方法,并通过实验得到了验证。2 切片机切削结构原理莲藕切片的切削原理是机器的核心,性能直接影响切片的质量。在使用PRO / E平台下建立了莲藕切削原理的虚拟样机(图1),结构本身的原理图如图2所示。莲藕切片机的切削原理是通过核心的曲柄滑块机构往里面添加材料,它可以堆叠许多莲藕,莲藕依靠自己本身上部和下部的莲藕,以便它能够到达挡板的表面。曲柄滑块机构是由电机驱动,在滑块上安装刀片切莲藕。但在切削过程中,发现在一块莲藕两端面的平行度是不足够的,这不能满足加工的技术要求。图1 莲藕切削原理的虚拟样机图2 切片原理结构图切片机的莲藕片平滑度的研究和提高。3 斜边的原因厚薄不均匀和斜边问题与刀片在切削过程中的力量有关。按照结构原理(图2),不考虑相互间摩擦和重量的因素,C点的力F的方向是沿链接方向。力F可以分解为一个水平方向的分力和一个垂直方向的分力。水平分力造成的刀沿垂直方向移动切削,但垂直方向上的力造成的刀沿垂直方向移动。由于滑块和导轨之间的差距,垂直分力会使叶片在运动时变形,刀不能沿水平方向切莲藕,导致出现斜边。因此,解决斜边的问题和提高切削质量的关键是减少或消除切片时的垂直分力。 当曲轴转速为6090转/分钟,C点和刀片连接部位的水平和垂直方向的力曲线如图3和图4所示。从图上可以看出,当曲柄的速度提高后,C点水平和垂直方向的力也增加了,相对稳定的水平力有利于切削莲藕期间,但垂直方向上的力也逐渐增加。越多的垂直方向上的力,越不利于切削的质量。图3 C点的水平力图4 C点的垂直方向上的力4 仿真和优化如果提高切片的平整度,结构优化可以减少垂直分力,所以尽可能的要刀片保持水平。当曲柄速度6090转/分钟时,刀质量中心的速度曲线和加速度曲线分别如图5和图6所示。根据速度曲线,在0.2s0.3s时间里,刀质量中心的速度是比较大的。按照刀应该有更高的速度来切削莲藕的要求,这期间的时间切削比其他时间更有利。根据加速度曲线,一个周期计算,在0.15s0.3s的时间里,相比其他的时间段加速度值是相对比较小。这表明速度的变化相对较小,同时惯性产生的力小,切片机受力引起的振动影响小。因此,在0.2s0.3s里来切莲藕有利于提高莲藕片的切削质量。图5 刀片的质量中心速度曲线图6 刀片的质量中心加速度曲线 基于上述分析,刀片和链接之间的垂直分力是造成斜边的主要原因。根据曲柄滑块机构的特点,在切削时间段通过改变曲柄偏移来减少对刀垂直方向上的力,从而提高切削质量。当曲轴转速为60转/分钟,曲轴偏心率得到了优化。当曲柄偏移量分别为40mm,20mm,0mm,-20mm, -40mm, -80mm, -120mm时,在不同的偏移量下模拟其原理,获得了垂直方向上的力曲线,如图7所示。图7 不同偏移下的垂直方向上的力曲线图7表明:偏心率为正值时,在0.2s0.3s随着曲柄偏移量增加,C点的垂直方向上的力逐渐增加;当偏心率为负值时,随着曲柄偏移量的增加,力开始下降,然后在-80mm处开始逐步增加。所以,当偏移量为-80mm,力在0.2s0.3s的数值降到最低,这时切削质量是最佳的。 当曲柄在其他的速度旋转,有相同的优化结果。图8显示的是曲轴转速为80转/分钟、曲轴偏移量为0mm到-80mm时,垂直方向上的力。从图8可以看出,当偏移量为-80mm时,C点垂直方向的里在0.2s0.3s大大减少。因此通过优化曲柄偏移量可以减少垂直方向上的力。图8 C点的垂直方向上的力5 实验分析莲藕片的厚度相对误差反映了切削质量,一般控制在10。在结构的优化和改进前,总是存在斜边现象,厚度相对误差约为15%左右,这是难以满足的技术要求。对曲柄滑块机构的偏移量进行优化,并根据优化的结果,它的结构有了一些改进。改进后的曲柄,在速度的条件为80110转/分钟时,切削试验出来的厚度相对误差的统计数据如表1所示。从四个速度层次进行分析实验,每个速度层次进行三次实验。表 1 切片厚度相对误差 序号曲柄速度(转/分钟)809010011016.6%6.4% 8.2%9.5%25.3%6.1%8.5%9.2%26.4%7.9%7.9%9.4%平均6.1%6.8%8.2%9.4%来自表1的数据显示,当曲柄速度为80110转/分钟时,切片厚度相对误差能满足各项技术指标,尤其是当曲轴旋转速度为80转/分钟和90转/分钟时,厚度相对误差低于7,达到了较高的切削质量。6 总结 切削的过程中,表面不平整和斜边的主要原因是作用在刀组件上的垂直分力,因此提高质量的关键是减小垂直方向上的力。通过刀片质量中心速度和加速度模拟分析曲线得到,0.2s0.3s是切片的最佳时间。通过优化曲柄的偏移量,当偏移量为-80mm时,垂直方向上的力在切削时间大大减小。经过实验改进莲藕切片机后,实验结果表明,通过改变曲柄偏移量,厚度相对误差不到10,完全能够满足要求。因此,平整度不理想和斜边问题基本解决。参考文献1 胡建平.莲藕切片技术的学习和新的模型设计. 中国农业机械化研究(12),112114.20062 韦恩铸.基于虚拟样机技术的新型莲藕切片机仿真优化.江苏大学,20083 张 策.机械动力学.高等教育出版社,19994 陈秀林.机械优化设计.浙江大学出版社,1999.5 陈丽萍,郑云群,容微群.机械系统的动态分析和应用指南ADAMS.北京:清华大学出版 社,2005第 7 页 共 7 页 本 科 毕 业 设 计(论 文)题 目 基于proe的蛋糕切片机的设计 专 业 学生姓名 班 级 学 号 指导教师 二 年 月 日摘要本文主要介绍蛋糕切片机的发展状况,蛋糕切片机结构设计原理,蛋糕切片机总体方案分析及确定,蛋糕切片机结构设计内容所包含的机械图纸的绘制,蛋糕切片机的计算,蛋糕切片机的结构设计结论与建议。整机结构主要由电动机减速器产生动力通过小带轮将需要的动力传递到大带轮上,带轮带动主轴,从而带动整机装置运动,此可以代替人手的繁重劳动,显著减轻工人的劳动强度,改善劳动条件,提高劳动生产率和生产自动化水平。本论文研究内容:(1) 蛋糕切片机总体结构设计。(2) 蛋糕切片机工作性能分析。(3)电动机的选择。(4) 蛋糕切片机的传动系统、执行部件及机架设计。(5)对设计零件进行设计计算分析和校核。(6)运用计算机辅助设计,对设计的零件进行三维建模。(7)绘制整机装配图及重要部件装配图和设计零件的零件图。 关键词:蛋糕切片机,结构设计,三维建模;电机 AbstractKeywords: 目 录1 绪 论11.1蛋糕切片机装置(机械)的应用及适用范围11.2蛋糕切片机(机械)的国内外发展情况11.3本课题研究的内容及方法41.3.1 主要的研究内容41.3.2 设计要求41.4 本文研究主要内容42 蛋糕切片机机构总体方案设计52.1 基本结构52.2 设计原则62.3 方案分析63 蛋糕切片机的机械部分计算73.1电机的选取73.2 带传动设计93.2.1 选择带型93.2.2确定带轮的基准直径并验证带速103.2.3 确定中心距离、带的基准长度并验算小轮包角113.2.4确定带的根数z113.2.5确定带轮的结构和尺寸123.2.6确定带的张紧装置123.3 计算压轴力123.3 轴的校核143.4 键的校核153.5 轴承的校核154 切割装置元件的计算184.1气缸的选择184.2 气缸结构214.3 工作原理23总 结24致 谢25参考文献261 绪 论1.1 本课题研究的目的、意义 蛋糕是一种面食,通常是甜的,典型的蛋糕是以烤的方式制作出来。蛋糕的 材料主要包括了面粉、甜味剂(通常是蔗糖)、黏合剂(一般是鸡蛋,素食主义者可 用面筋和淀粉代替)、起酥油(一般是牛油或人造牛油,低脂肪含量的蛋糕会以 浓缩果汁代替),液体(牛奶,水或果汁),香精和发酵剂(例如酵母或者发酵 粉)。而且根据地域,口味更是千差万别。 随着和外国的交流增加,西式糕点也加入中国,其造型新颖,风格独特,口味清新,更是颠覆了 传统糕点在我国 人民中的印象。不仅仅在选材,制作方式,口感方面都给我仧一种耳目一新的感 而今的蛋糕的发展更是融合了中西两种风格,成为新一代的流行美食,深受大众的喜欢,市场占有率极高蛋糕作为一种常见的食品,在日常生活中扮演者 重要的角色。它可以作为早餐、中餐、晚餐,也可以作为主食。而今,新世纪的 蛋糕中添加了一些保健性的药物,在不影响其自身美味的同时还大大提高了它的 的营养价值和药用效果。 蛋糕切片机发展叱已经很多年了, 对亍家居型的蛋糕 切片也是有市场供应。 早就已经发展到了一定的阶段。近几年来,随着经济的飞速发展,人民生活水平的不断提高。蛋糕的制作慢慢有家庭小批量的生产趋势,加上蛋糕庞大的需求量,价格适宜且功能强大的小作坊型蛋糕切片机变得非常必 2.国内外的研究现状及发展趋劳随着人民生活水平的提高,人仧开始追求生活,不仅仅满足亍市场,商 店里买到的蛋糕。而且现在自家制作蛋糕也不再是难事。制作工具,原料和 配料都容易买到。甚至可以根据自己喜爱的口味, 做出软硬适中的蛋糕, 而且还可以根据自己的想法去设计。面对如今众多的大学生创业,下岗工人的再就业创业,如此大的蛋糕市场是个很好的机会。所以,一台价格适宜, 容易上手,操作简单的蛋糕切片机能给他仧在蛋糕制作的过程中带来很大的 便捷。 不过现阶段的蛋糕切片机在国内主要存在亍中、大批量生产中。小作坊的蛋糕切片机在小批量生产的商店,家用有广大的市场。随着家电机械 化程度越来越高,人仧不再停止纯手工劳劢。而且针对蛋糕种类如此之多,质地又软又硬,人工切片有诸多的不便。而且工作效率比较低,手工切出来 的蛋糕美观程度也不如机器切的。所以小作坊型蛋糕切片机变得被人仧和市场需要。1.1蛋糕切片机装置(机械)的应用及适用范围长期以来,大部分地区蛋糕切片机还沿用传统的手工劳作方式,劳动强度大,生产效率低。随着市场经济的发展,蛋糕切片机开始以一种新型设备登入市场,蛋糕切片机以快捷方便供不应求,传统加工方式已经不能满足市场的需求,所以蛋糕切片机蛋糕切片机的设计,以加快蛋糕切片机的生产效率,对刚收获的蛋糕切片机进行快速收货,以便于收割,是供应蛋糕切片机市场的有效方法。本文就蛋糕切片机这一环节进行研究,目的在于研制出一种新型的蛋糕切片机蛋糕切片机,加快蛋糕切片机的加工过程,缩短蛋糕切片机的产品形成周期,提高效率,降低成本。1.2蛋糕切片机(机械)的国内外发展情况蛋糕切片机,最初是由美国于上世纪五十年代开发出来的产品。后来日本得到发展,并于上世纪六七十年代随日本经济高速发展,技术性能得到长足的进步。上世纪八十年代初,我国大量引进蛋糕切片机并生产出自己的产品。以日清品牌为代表,主要针对方便面生产线配套使用。上世纪九十年代,这种机型开始大量用于粮食流通,同时派生出各种各样的类似包装机。随着机电一体化的应用,粉料自动包装也向着高速全自动模块化的方向发展及创新。现今国外开发的蛋糕切片机已极其人性化:高速、节能、全自动、模块化。就国内外蛋糕切片机的开发情况来看,主要从以下几点进行:(l)不断扩大其通用能力,以满足多种属性粉料的包装。(2)高速全自动,配备微机控制系统,借助预先储存的程序控制多台伺服电机,分别驱动有关执行机构。(3)参数化调整和设置,对主要操作部件(供送、袋成型、牵引、封切等)作适当调整有关工作参数,便可在较宽的尺寸范围内,满足不同品种不同尺寸的包装。(4)模块化结构设计,对供送、牵引、封切等主要部件进行相对独立并又能较为自由组合的结构设计,以满足卧式组合和立式组合的包装机。德国与美国、日本、意大利均为世界蛋糕切片机机械大国。在蛋糕切片机机械设计、制造、技术性能等方面居于领先地位。德国蛋糕切片机机械的设计是依据市场调研及市场分析结果进行的,其,目标是努力为客户,尤其是为大型企业服务。为满足客户要求,德国蛋糕切片机机械制造厂商和设计部门采取了诸多措施: (1)工艺流程自动化程度越来越高,以提高生产率和设备的柔性及灵活性。采用机械手完成复杂的动作。操作时,在由电脑控制的摄像机录取信息和监控下,机械手按电脑指令完成规定动作,确保包装的质量。 (2)提高生产效率,降低生产成本,最大限度地满足生产要求。德国蛋糕切片机机械以饮料、啤酒灌装机械和塑料蛋糕切片机机械见长,具有高速、成套、自动化程度高和可靠性好等特点。其饮料灌装速度高达12万瓶/h,小袋蛋糕切片机机的包装速度高达900袋min。(3)使产品机械和蛋糕切片机机械一体化。许多产品要求生产之后直接进行包装,以提高生产效率。如德国生产的巧克力生产及包装设备,就是由一个系统控制完成的。两者一体化,关键是要解决好在生产能力上相互匹配的问题。 (4)适应产制品变化,具有良好的柔性和灵活性。由于市场的激烈竞争,产品更新换代的周期越来越短。如化妆品生产三年一变,甚至一个季度一变,生产量又都很大,因此要求蛋糕切片机机械具有良好的柔性和灵活性,使蛋糕切片机机械的寿命远大于产品的寿命周期,这样才能符合经济性的要求。 (5)普遍使用计算机仿真设计技术。随着新产品开发速度不断加快,德国蛋糕切片机机械设计普遍采用了计算机仿真设计技术,大大缩短了蛋糕切片机机械的开发设计周期.蛋糕切片机设计不仅要重视其能力和效率,还要注重其经济性。所谓经济性不完全是机械设备本身的成本,更重要的是运转成本,因为设备折旧费只占成本的68,其他的就是运转成本。我国蛋糕切片机行业起步于20世纪70年代,在80年代末和90年代中得到迅速发展。已成为机械工业中的10大行业之一,无论是产量,还是品种上,都取得了令人瞩目的成就,为我国包装工业的快速发展提供了有力的保障。目前,我国已成为世界蛋糕切片机工业生产和消费大国之一。 蛋糕切片机作为一种产品,它的含义不仅仅是产品本身的物质意义,而是包括形式产品、隐形产品及延伸产品3层含义。形式产品是指食品机本身的具体形态和基本功能;隐形产品是指食品机给用户提供的实际效用;延伸产品是指食品机的质量保证、使用指导和售后服务等。所以食品机的设计应该包括:市场调研、原理图设计、结构设计、施工图设计、使用说明书编写及售后服务预案等。 蛋糕切片机设计的类别主要有:测绘仿制设计、开发性设计、改进性设计、系列化设计。如啤酒灌装生产线生产能力为164万瓶/h,其中灌装机的灌装阀工位数从48个、60个、90个到120个就属于系列化设计。 高速运行的食品机,特别是一些先进机型,大多是测绘、仿制国外的同类机型,进行国产化设计和系列化设计。其主要的原因是:(1)大多数设计人员还没有真正掌握先进的设计方法,如高速蛋糕切片机的动力学设计理论和方法等,对高速工况下机构的动态精度分析等问题还不能模拟解决;(2)产、学、研结合不够紧密,理论上的科研成果不能及时地在实际设计中运用,设计人员缺乏及时的技术培训;(3)整个行业缺乏宏观调控的力度,优势资源不能得到合理的配置与调整。在蛋糕切片机设计领域,绝大多数设计人员仍沿用以前的设计方法:(1)根据设计任务书寻找同类机型作为样机;(2)参考样机制定各项技术性能指标及使用范围;(3)设计工作原理图、传动系统图;(4)设计关键零件,部件;(5)设计总装图方案和动作循环图;(6)设计部件图、总装图和零件图;(7)对主要部件中的关键零件进行强度、刚度校核;(8)设计控制原理图、施工图等。而今,国内一些大学的设计软件,可以对食品机中常用机构进行有限元分析和优化设计,其开发的凸轮连杆机构CADCAM软件已经能够满足企业进行凸轮连杆机构自主设计的能力,但在实际蛋糕切片机的设计中应用还不普遍。新型蛋糕切片机往往是机、电、气一体化的设备。充分利用信息产品的最新成果,采用气动执行机构、伺服电机驱动等分离传动技术,可使整机的传动链大大缩短,结构大为简化,工作精度和速度大大提高。其中的关键技术之一是采用了多电机拖动的同步控制技术。其实掌握这种技术并不很难,只是一些设计人员不了解蛋糕切片机的这一发展趋势。如果说以前我国蛋糕切片机设计是仿制、学习阶段,那么现在我们应该有创新设计的意识。我国食品行业技术与机械近些年所取得的成绩是显著的,其起步于20世纪70年代末,刚起步时年产值仅七、八千万元,产品品种仅100 余种,技术水平也较低。在20纪80年代中期至20世纪年代中期十余年的时间里,才得到快速发展,年增长率达到20%30% ,到1999年底塑料和蛋糕切片机达40 大类,品种达1700种,到2000年产值增加到300亿元,且技术水平也上了个台阶,开始出现了规模化、自动化趋势,传动复杂、技术含量高的设备也开始出现,许多蛋糕切片机如液体塑料灌装机等设备已开始成套出口。1.3本课题研究的内容及方法1.3.1 主要的研究内容在查阅了国内外大量的有关蛋糕切片机设计理论及相关知识的资料和文献基础上,综合考虑蛋糕切片机结构特点、具体作业任务特点以及蛋糕切片机的推广应用,分析确定使用蛋糕切片机配合生产工序,实现自动化的目的。为了实现上述目标,本文拟进行的研究内容如下:1 根据现场作业的环境要求和蛋糕切片机本身的结构特点,确定蛋糕切片机整体设计方案。2 确定蛋糕切片机的性能参数,对初步模型进行静力学分析,根据实际情况选择电机。3 从所要功能的实现出发,完成蛋糕切片机各零部件的结构设计;4 完成主要零部件强度与刚度校核。1.3.2 设计要求1 根据所要实现的功能,提出蛋糕切片机的整体设计方案;2 完成蛋糕切片机结构的详细设计;3 通过相关设计计算,完成电机选型;4 完成蛋糕切片机结构造型;绘制蛋糕切片机结构总装配图、主要零件图。1.4 本文研究主要内容通过利用网络工具、图书馆的书籍和各类期刊、杂志查阅了解蛋糕切片机的相关知识,确定本设计符合要求,满足需要。具体设计方法如下:1、查阅资料、结合所学专业课程,产生蛋糕切片机结构设计的基本思路;2、查阅各类机械机构手册,确定合理的蛋糕切片机结构;3、根据给定技术参数来选择合适的部位;4、重点对驱动机构及控制机构进行设计研究;5、通过研究国内外情况,确定本设计课题的重点设计;6、完成2D装配图的设计和绘制,并由此绘制零件图;7、编写设计说明书;8、检查并完善本设计课题。本设计采用的方法是理论设计与经验设计相结合的方案,所运用的资料来源广泛,内容充足。262 蛋糕切片机机构总体方案设计2.1 基本结构 蛋糕切片机其功能部件由支承体、带动力装置的蛋糕切片机等组成。由功能部件(1),电动机和机架等构成的蛋糕切片机,下图是该机器的工作原理图。 图2.1 蛋糕切片机总体图图2.2 切刀图2.2 设计原则 蛋糕切片机其功能部件由支承体、带动力装置的蛋糕切片机切刀部件和包压线或机筒等组成。由功能部件,电动机和机架(或机脚)等构成蛋糕切片机。在功能部件中的蛋糕切片机转子上装有使切割2.3 方案分析 采用平铺带式传送装置,将蛋糕手工放落在传送带上,由气缸带动切糕刀将蛋糕送到切割。此输送装置由于需要电机通过轴带动输送带滚筒转动难看出此蛋糕切片机包括2个电机,3根轴,滚筒,输送带,带轮,带轮等等。蛋糕切片机零件众多,这无疑增加了蛋糕切片机的制造成本与维护运行成本。对于广大的蛋糕来说,这种卧式蛋糕切片机很显然不是他们理想的选择。因此,设计出一款小型且制造成本低廉,适用与蛋糕切片机非常必要。蛋糕切片机其功能部件由支承体、带动力装置的蛋糕切片机切割部件和机筒等组成。由功能部件,电动机(和机架等构成的蛋糕切片机,其特征是转子上装有使刀刃切铡平面垂直于主轴的切割功能部件下部内有能使物料自动卸出,设有与刀片相对。3 蛋糕切片机的机械部分计算3.1电机的选取蛋糕切片机在工作时,在运转稳定性较好(保障运转稳定性的条件:有足够的转动惯量;发动机有足够的储备功率和较灵敏的调速器)的条件下,其功率总耗用N 由两部分组成:一部分用于克服空转而消耗的功率(占总功率消耗的5%-7%),一部分用于克服脱粒阻力而消耗的功率(占总功率消耗的93%-95%),所以装置的功率消耗为: N =+ (kW ) (4) 1)其中空转功率消耗: =+ 式中:系数,为克服轴承及传动装置的摩擦阻力的功率消耗, B系数,为克服滚筒转动时消耗的功率, .由于计算较为复杂,初步采用估算的方法,拟采用Y132M-4电动机。查机械设计课程设计手册得:选择,其铭牌如下表3-1:表3-1 Y系列三相异步电动机电动机型号额定功率 KW满载转速 r/min堵转转矩/额定转矩最大转矩/额定转矩质量 KgY132M-4 7.5同步转速1500 r/min,4级 14402.22.281(a)(b) 图3-1 电动机的安装及外形尺寸示意图表3-2 电动机的安装技术参数中心高/mm 外型尺寸/mm L(AC/2+AD)HD 底脚安装 尺寸AB地脚螺栓 孔直径K 轴伸尺 寸DE 装键部位 尺寸FGD132515 345 315216 1781238 8010 433.2 带传动设计输出功率P=7.5kW,转速n1=1440r/min,n2=500r/min表3-1 工作情况系数工作机原动机类类一天工作时间/h10161016载荷平稳液体搅拌机;离心式水泵;通风机和鼓风机();离心式压缩机;轻型运输机1.01.21.3载荷变动小带式运输机(运送砂石、谷物),通风机();发电机;旋转式水泵;金属切削机床;剪床;压力机;印刷机;振动筛载荷变动较大螺旋式运输机;斗式上料机;往复式水泵和压缩机;锻锤;磨粉机;锯木机和木工机械;纺织机械载荷变动很大破碎机(旋转式、颚式等);球磨机;棒磨机;起重机;挖掘机;橡胶辊压机根据V带的载荷平稳,两班工作制(16小时),查机械设计P296表4,取KA1.1。即3.2.1 选择带型普通V带的带型根据传动的设计功率Pd和小带轮的转速n1按机械设计P297图1311选取。图3-1 带型图根据算出的Pd8.25kW及小带轮转速n11440r/min ,查图得:dd=80100可知应选取A型V带。3.2.2确定带轮的基准直径并验证带速由机械设计P298表137查得,小带轮基准直径为80100mm则取dd1=90mm ddmin.=75 mm(dd1根据P295表13-4查得)表3-2 V带带轮最小基准直径槽型YZABCDE205075125200355500由机械设计P295表13-4查“V带轮的基准直径”,得=250mm 误差验算传动比: (为弹性滑动率)误差 符合要求 带速 满足5m/sv300mm,所以宜选用E型轮辐式带轮。总之,小带轮选H型孔板式结构,大带轮选择E型轮辐式结构。带轮的材料:选用灰铸铁,HT200。3.2.6确定带的张紧装置 选用结构简单,调整方便的定期调整中心距的张紧装置。3.3 计算压轴力由机械设计P303表1312查得,A型带的初拉力F0133.46N,上面已得到=153.36o,z=8,则对带轮的主要要求是质量小且分布均匀、工艺性好、与带接触的工作表面加工精度要高,以减少带的磨损。转速高时要进行动平衡,对于铸造和焊接带轮的内应力要小, 带轮由轮缘、腹板(轮辐)和轮毂三部分组成。带轮的外圈环形部分称为轮缘,轮缘是带轮的工作部分,用以安装传动带,制有梯形轮槽。由于普通V带两侧面间的夹角是40,为了适应V带在带轮上弯曲时截面变形而使楔角减小,故规定普通V带轮槽角 为32、34、36、38(按带的型号及带轮直径确定),轮槽尺寸见表7-3。装在轴上的筒形部分称为轮毂,是带轮与轴的联接部分。中间部分称为轮幅(腹板),用来联接轮缘与轮毂成一整体。表3-5 普通V带轮的轮槽尺寸(摘自GB/T13575.1-92)项目 符号 槽型 Y Z A B C D E 基准宽度 b p 5.3 8.5 11.0 14.0 19.0 27.0 32.0 基准线上槽深 h amin 1.6 2.0 2.75 3.5 4.8 8.1 9.6 基准线下槽深 h fmin 4.7 7.0 8.7 10.8 14.3 19.9 23.4 槽间距 e 8 0.3 12 0.3 15 0.3 19 0.4 25.5 0.5 37 0.6 44.5 0.7 第一槽对称面至端面的距离 f min 6 7 9 11.5 16 23 28 最小轮缘厚 5 5.5 67.5 10 12 15 带轮宽 B B =( z -1) e + 2 f z 轮槽数 外径 d a 轮 槽 角 32 对应的基准直径 d d 60 - - - - - - 34 - 80 118 190 315 - - 36 60 - - - - 475 600 38 - 80 118 190 315 475 600 极限偏差 1 0.5 V带轮按腹板(轮辐)结构的不同分为以下几种型式: (1) 实心带轮:用于尺寸较小的带轮(dd(2.53)d时),如图3-2a。 (2) 腹板带轮:用于中小尺寸的带轮(dd 300mm 时),如图3-2b。 (3) 孔板带轮:用于尺寸较大的带轮(ddd) 100 mm 时),如图3-2c 。 (4) 椭圆轮辐带轮:用于尺寸大的带轮(dd 500mm 时),如图3-2d。(a) (b) (c) (d)图3-2 带轮结构类型根据设计结果,可以得出结论:小带轮选择实心带轮,如图(a),大带轮选择腹板带轮如图(b)3.3 轴的校核需要验算传动轴薄弱环节处的倾角荷挠度。验算倾角时,若支撑类型相同则只需验算支反力最大支撑处倾角;当此倾角小于安装齿轮处规定的许用值时,则齿轮处倾角不必验算。验算挠度时,要求验算受力最大的齿轮处,但通常可验算传动轴中点处挠度(误差%3).当轴的各段直径相差不大,计算精度要求不高时,可看做等直径,采用平均直径进行计算,计算花键轴传动轴一般只验算弯曲刚度,花键轴还应进行键侧挤压验算。弯曲刚度验算;的刚度时可采用平均直径或当量直径。一般将轴化为集中载荷下的简支梁,其挠度和倾角计算公式见【5】表7-15.分别求出各载荷作用下所产生的挠度和倾角,然后叠加,注意方向符号,在同一平面上进行代数叠加,不在同一平面上进行向量叠加。:通过受力分析,最大挠度:查【1】表3-12许用挠度; 。3.4 键的校核键和轴的材料都是钢,由【4】表6-2查的许用挤压应力,取其中间值,。键的工作长度,键与轮榖键槽的接触高度。由【4】式(6-1)可得可见连接的挤压强度足够了,键的标记为:3.5 轴承的校核、轴轴承的校核轴选用的是深沟球轴承6206,其基本额定负荷为19.5KN, 由于该轴的转速是定值,所以齿轮越小越靠近轴承,对轴承的要求越高。根据设计要求,应该对轴未端的滚子轴承进行校核。轴传递的转矩 受力 根据图3.12受力分析和受力图可以得出轴承的径向力为:图3.12受力分析和受力图在水平面:在水平面: 因轴承在运转中有中等冲击载荷,又由于不受轴向力,【4】表13-6查得载荷系数,取,则有: 轴承的寿命计算:所以按轴承的受力大小计算寿命 故该轴承6206能满足要求。、其他轴的轴承校核同上,均符合要求。4 切割装置元件的计算切割装置采用的是气缸往下压的方式进行。4.1气缸的选择气缸的选用要根据以下方面进行分析:1、类型的选择根据工作要求和条件,正确选择气缸的类型。要求气缸到达行程终端无冲击现象和撞击噪声应选择缓冲气缸;要求重量轻,应选轻型缸;要求安装空间窄且行程短,可选薄型缸;有横向负载,可选带导杆气缸;要求制动精度高,应选锁紧气缸;不允许活塞杆旋转,可选具有杆不回转功能气缸;高温环境下需选用耐热缸;在有腐蚀环境下,需选用耐腐蚀气缸。在有灰尘等恶劣环境下,需要活塞杆伸出端安装防尘罩。要求无污染时需要选用无给油或无油润滑气缸等。 2、安装形式根据安装位置、使用目的等因素决定。在一般情况下,采用固定式气缸。在需要随工作机构连续回转时(如车床、磨床等),应选用回转气缸。在要求活塞杆除直线运动外,还需作圆弧摆动时,则选用轴销式气缸。有特殊要求时,应选择相应的特殊气缸。 3、作用力的大小即缸径的选择。根据负载力的大小来确定气缸输出的推力和拉力。一般均按外载荷理论平衡条件所需气缸作用力,根据不同速度选择不同的负载率,使气缸输出力稍有余量。缸径过小,输出力不够,但缸径过大,使设备笨重,成本提高,又增加耗气量,浪费能源。在夹具设计时,应尽量采用扩力机构,以减小气缸的外形尺寸。 4、活塞行程与使用的场合和机构的行程有关,但一般不选满行程,防止活塞和缸盖相碰。如用于夹紧机构等,应按计算所需的行程增加1020的余量。5、活塞的运动速度主要取决于气缸输入压缩气油流量、气缸进排气口大小及导管内径的大小。要求高速运动应取大值。气缸运动速度一般为50800/s。对高速运动气缸,应选择大内径的进气管道;对于负载有变化的情况,为了得到缓慢而平稳的运动速度,可选用带节流装置或气液阻尼缸,则较易实现速度控制。选用节流阀控制气缸速度需注意:水平安装的气缸推动负载时,推荐用排气节流调速;垂直安装的气缸举升负载时,推荐用进气节流调速;要求行程末端运动平稳避免冲击时,应选用带缓冲装置的气缸。 图5.1 气缸实物图6、气缸的选型步骤及其类型介绍程序1:根据操作形式选定气缸类型:气缸操作方式有双动,单动弹簧压入及单动弹簧压出等三种方式程序2:选定其它参数:1、选定气缸缸径大小 根据有关负载、使用气油压力及作用方向确定2、选定气缸行程 工件移动距离3、选定气缸系列4、选定气缸安装型式 不同系列有不同安装方式,主要有基本型、脚座型、法兰型、U型钩、轴耳型5、选定缓冲器 无缓冲、橡胶缓冲、气缓冲、油压吸震器6、选定磁感开关 主要是作位置检测用,要求气缸内置磁环7、选定气缸配件 包括相关接头(一)单作用气缸 单作用气缸只有一腔可输入压缩气油,实现一个方向运动。其活塞杆只能借助外力将其推回;通常借助于弹簧力,膜片张力,重力等。其原理及结构见下图:图5.2单作用气缸1 缸体;2活塞;3弹簧;4活塞杆;单作用气缸的特点是:1)仅一端进(排)气,结构简单,耗气量小。2)用弹簧力或膜片力等复位,压缩气油能量的一部分用于克服弹簧力或膜片张力,因而减小了活塞杆的输出力。3)缸内安装弹簧、膜片等,一般行程较短;与相同体积的双作用气缸相比,有效行程小一些。4)气缸复位弹簧、膜片的张力均随变形大小变化,因而活塞杆的输出力在行进过程中是变化的。由于以上特点,单作用活塞气缸多用于短行程。其推力及运动速度均要求不高场合,如气吊、定位和夹紧等装置上。单作用柱塞缸则不然,可用在长行程、高载荷的场合。(二) 双作用气缸双作用气缸指两腔可以分别输入压缩气油,实现双向运动的气缸。其结构可分为双活塞杆式、单活塞杆式、双活塞式、缓冲式和非缓冲式等。此类气缸使用最为广泛。1) 双活塞杆双作用气缸双活塞杆气缸有缸体固定和活塞杆固定两种。2) 缸体固定时,其所带载荷(如工作台)与气缸两活塞杆连成一体,压缩气油依次进入气缸两腔(一腔进气另一腔排气),活塞杆带动工作台左右运动,工作台运动范围等于其有效行程s的3倍。安装所占空间大,一般用于小型设备上。活塞杆固定时,为管路连接方便,活塞杆制成空心,缸体与载荷(工作台)连成一体,压缩气油从空心活塞杆的左端或右端进入气缸两腔,使缸体带动工作台向左或向左运动,工作台的运动范围为其有效行程s的2倍。适用于中、大型设备。 图3.3双活塞杆双作用气缸a)缸体固定;b)活塞杆固定1缸体;2工作台;3活塞;4活塞杆;5机架双活塞杆气缸因两端活塞杆直径相等,故活塞两侧受力面积相等。当输入压力、流量相同时,其往返运动力及速度均相等。(三)缓冲气缸缓冲气缸对于接近行程末端时速度较高的气缸,不采取必要措施,活塞就会以很大的力(能量)撞击端盖,引起振动和损坏机件。为了使活塞在行程末端运动平稳,不产生冲击现象。在气缸两端加设缓冲装置,一般称为缓冲气缸。缓冲气缸见下图,主要由活塞杆1、活塞2、缓冲柱塞3、单向阀5、节流阀6、端盖7等组成。其工作原理是:当活塞在压缩气油推动下向右运动时,缸右腔的气体经柱塞孔4及缸盖上的气孔8排出。在活塞运动接近行程末端时,活塞右侧的缓冲柱塞3将柱塞孔4堵死、活塞继续向右运动时,封在气缸右腔内的剩余气体被压缩,缓慢地通过节流阀6及气孔8排出,被压缩的气体所产生的压力能如果与活塞运动所具有的全部能量相平衡,即会取得缓冲效果,使活塞在行程末端运动平稳,不产生冲击。调节节流阀6阀口开度的大小,即可控制排气量的多少,从而决定了被压缩容积(称缓冲室)内压力的大小,以调节缓冲效果。若令活塞反向运动时,从气孔8输入压缩气油,可直接顶开单向阀5,推动活塞向左运动。如节流阀6阀口开度固定,不可调节,即称为不可调缓冲气缸。图3.4缓冲气缸1活塞杆;2活塞;3缓冲柱塞;4柱塞孔;5单向阀6节流阀;7端盖;8气孔4.2 气缸结构 气缸是由缸筒、端盖、活塞、活塞杆和密封件组成,其内部结构如图所示: 1)缸筒 缸筒的内径大小代表了气缸输出力的大小。活塞要在缸筒内做平稳的往复滑动,缸筒内表面的表面粗糙度应达到Ra0.8um。对钢管缸筒,内表面还应镀硬铬,以减小摩擦阻力和磨损,并能防止锈蚀。缸筒材质除使用高碳钢管外,还是用高强度铝合金和黄铜。小型气缸有使用不锈钢管的。带磁性开关的气缸或在耐腐蚀环境中使用的气缸,缸筒应使用不锈钢、铝合金或黄铜等材质。 SMC CM2气缸活塞上采用组合密封圈实现双向密封,活塞与活塞杆用压铆链接,不用螺母。 2)端盖 端盖上设有进排气通口,有的还在端盖内设有缓冲机构。杆侧端盖上设有密封圈和防尘圈,以防止从活塞杆处向外漏气和防止外部灰尘混入缸内。杆侧端盖上设有导向套,以提高气缸的导向精度,承受活塞杆上少量的横向负载,减小活塞杆伸出时的下弯量,延长气缸使用寿命。导向套通常使用烧结含油合金、前倾铜铸件。端盖过去常用可锻铸铁,现在为减轻重量并防锈,常使用铝合金压铸,微型缸有使用黄铜材料的。 3)活塞 活塞是气缸中的受压力零件。为防止活塞左右两腔相互窜气,设有活塞密封圈。活塞上的耐磨环可提高气缸的导向性,减少活塞密封圈的磨耗,减少摩擦阻力。耐磨环长使用聚氨酯、聚四氟乙烯、夹布合成树脂等材料。活塞的宽度由密封圈尺寸和必要的滑动部分长度来决定。滑动部分太短,易引起早期磨损和卡死。活塞的材质常用铝合金和铸铁,小型缸的活塞有黄铜制成的。 4)活塞杆 活塞杆是气缸中最重要的受力零件。通常使用高碳钢,表面经镀硬铬处理,或使用不锈钢,以防腐蚀,并提高密封圈的耐磨性。 5)密封圈 回转或往复运动处的部件密封称为动密封,静止件部分的密封称为静密封。 缸筒与端盖的连接方法主要有以下几种: 整体型、铆接型、螺纹联接型、法兰型、拉杆型。 6)气缸工作
温馨提示:
1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
2: 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
3.本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
提示  人人文库网所有资源均是用户自行上传分享,仅供网友学习交流,未经上传用户书面授权,请勿作他用。
关于本文
本文标题:基于proe的蛋糕切片机的设计【说明书+CAD+PROE】
链接地址:https://www.renrendoc.com/p-78150904.html

官方联系方式

2:不支持迅雷下载,请使用浏览器下载   
3:不支持QQ浏览器下载,请用其他浏览器   
4:下载后的文档和图纸-无水印   
5:文档经过压缩,下载后原文更清晰   
关于我们 - 网站声明 - 网站地图 - 资源地图 - 友情链接 - 网站客服 - 联系我们

网站客服QQ:2881952447     

copyright@ 2020-2025  renrendoc.com 人人文库版权所有   联系电话:400-852-1180

备案号:蜀ICP备2022000484号-2       经营许可证: 川B2-20220663       公网安备川公网安备: 51019002004831号

本站为文档C2C交易模式,即用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知人人文库网,我们立即给予删除!