轨道车辆塞拉门传动及携门装置设计【说明书+CAD+UG】
收藏
资源目录
压缩包内文档预览:(预览前20页/共55页)
编号:78737249
类型:共享资源
大小:20.36MB
格式:ZIP
上传时间:2020-05-13
上传人:柒哥
认证信息
个人认证
杨**(实名认证)
湖南
IP属地:湖南
40
积分
- 关 键 词:
-
说明书+CAD+UG
轨道车辆塞拉门传动及携门装置设计【说明书+CAD+UG】
轨道
车辆
拉门
传动
装置
设计
说明书
CAD
UG
- 资源描述:
-
购买设计请充值后下载,,资源目录下的文件所见即所得,都可以点开预览,,资料完整,充值下载可得到资源目录里的所有文件。。。【注】:dwg后缀为CAD图纸,doc,docx为WORD文档,原稿无水印,可编辑。。。具体请见文件预览,有不明白之处,可咨询QQ:12401814
- 内容简介:
-
南京工程学院毕业设计(论文)外文资料翻译原 文 题 目: Simulation of an SM90 door system in ADAMS 原 文 来 源: European ADAMS User Conference 学 生 姓 名: 孙军 学 号: 201080429 所在院(系)部: 机械工程学院 专 业 名 称: 机械电子工程 SM90门系统在ADAMS的仿真Edward de Jong,Christiaan Wattl NedTrain Consulting BV介绍如今,荷兰铁路(NS)处理的火车乘客人数以每年约6的速度强劲增长。这意味着,现有铁路车辆的可用性和可靠性对运营商和NS乘客具有重大意义。当然列车运行的效率也将对它的工作稳定性产生影响。最重要的措施表明列车服务的效率是因为众多“技术上的延误”。这意味着众多延误是因为(技术)失败,这直接影响列车运行和导致延误超过3分钟。坐火车旅行时,行车时间取决于行驶距离、刹车/加速性能以及在中途站停车时间等方面。这一次是离开或进入火车乘客人数,门的几何形状,开启和关闭门的动作决定。列车停车时间的长度从约60秒至180秒。门打开或关闭所需的时间大约是6秒。这意味着,开关门所需的时间可高达20的总停车时间。任何减少开关门时间的措施,将更好的直接减少停机时间和达到更好的性能。在开启和关闭门的运动结束时,门被推离中心位置,这导致系统中产生一个预紧力。橡胶停止时的位置和状态确定了门系统中开启或关闭时的位置上产生的预紧量,为了以防这些停止块在磨损、沉陷或维护过程中被修改而退化,这可能导致运行失败。门不能关闭,锁定或不留在打开位置。这些故障导致列车延误和门的故障却从运行中排除。关闭列车门时一个故障的影响可能是积极的,当检测到门板之间有什么东西时。门运动速度变化表明了可能有物体在门板之间,这导致列车门自动打开了。然而挡在门板中间的物体的特点决定了门的响应而且并不一定会自动导致门板的反向运动。在这种情况下,关闭动作可能不会停止,这会使乘客受伤或处在危险的状况。减少门的关闭时间将因此还需要审查障碍抑制系统的正常运行。这种安全系统需要对物体的形状大小超过65-70mm。较小的对象将不会被检测到,门也将不会打开。本次调查的目的因为NS客运是我们最重要的客户,我们正在积极寻找有利于我们的客户的任何可能性,并进行改善。专业车辆由于NedTrain咨询,我们必须看清楚在各次列车系统存在的可能性和限制。随着技术持续不断的发展,在多体软件程序的帮助下将表现出提高了系统的功能。由于门系统复杂的三维机制和需要工程领域内的广泛互动(机械、电气和气动),以前的分析方法被证明是限制在一定的复杂程度内的。但多体模型会让我们更直观的观察在列车门的运动中发生的各种现象。定义以下参数:通过不同的几何性质的分析观察列车门的开启和关闭动作安全失效分析障碍抑制设备控制器的改进检修优化探讨改进控制器的可行性和效益列车运行和风力与门运动的关系乘客诱导力量与门运动的关系为了确定模拟的附加值,SM90列车门系统的ADAMS模型已开发。本报告将重点放在模型开发的第一步,并显示上述目标的可行性。这样的结果将用来说服NS的乘客相信对列车门系统的这些改进是有益处的。系统描述图1所示为SM90门系统的基本工作原则图1 SM90门系统图2 扭矩气缸按下“打开或关闭”按钮,激活一个微处理器并提供充分的压力在扭矩缸的驱动舱上。为了提高门的开闭速度,此缸的排气舱通过脉冲宽度调制的减压阀与大气相连。微处理器通过改变流出量实现减压。瞬时流量控制是在门的角速度和非线性控制器的基础上实现的。微处理器可以通过一个增压阀提高排气舱的压力从而来降低门的速度。装置这个增压阀的作用是为了以防万一门的角速度过高从而超过某一阀值。这是一个普遍的规则,通过控制排气舱从而使粘滑现象降到最低。压力差导致扭矩缸活塞的位移,此位移结果作用在一个旋转的圆柱体上(通过齿轮齿条传动)。一处杆联动将这旋转作用在两个门扇机制中。通过这样的方法此位置与门位置之间建立了独特的位置链接(通过非线性机械传动方式)。扭矩气缸的角位移通过位移传感器测量。基于角度信息的微处理器控制扭矩缸的实时位置从而确定门的位置。图3所示为该模型的图形表示。图3 ADAMS上门系统模型仿真模型是能够重现开启和关闭门的动作。它由机械门系统(门板、杆、密封件、停止块),气动元件(活塞、高压舱、气动阀)和电子元件(测量和控制部件)组成。所有的系统已在ADAMS/View环境下建模。气动系统的Saint Venant方程组已用于高压舱气体介质的状态描述。该模型已被测量结果验证,图4显示了在关门操作中的系统响应。图4关门操作过程中的状态响应图5关门过程中的计算响应在开门过程中开启腔压力从1bar到10bar迅速增加,而关闭腔的压力下降并由控制器控制以保持门所需的运动。由于活塞运动,开启腔的压力改变了一点导致体积增加。在开启门期间这种现象是清晰可见的,因为机械系统通过越过中心位置导致了一个很高的开启速度。在t=5时门已经关闭而开启运动开始。测量结果和计算响应呈现良好的对应。当在中心位置是压力暂时增加,这在测量图中比计算响应图中显示的更加明显。这是由于现有的旁通阀,通过与关闭腔的连接限制了压力的快速下降。此阀并未在计算机中建立模型。门沉降在火车的运行中,门中停止块的位置会因为磨损、橡胶或钢构件的塑性变形或维护操作而改变。据了解,在实际过程中,这些停止块的错位会导致门不能关闭或者门在闭合位置的预紧力不足。同样,门板的制导机制也被证明会因为这种现象而导致强度失效。要研究这种现象,停止块的位置精度已被更改为1mm。图6和图7所示为开启和关闭动作时凸起停止块的压力和推力(只显示开启动作)图6不同的凸起停止块位置:压力计算响应图7不同的凸起停止块位置:推力计算响应很明显,压力显示表明只在开启或关闭动作结束时和标准情况有偏差。推力作用在凸起停止块上,因此门的制导机制增加约190。这表明凸起停止块位置的微小偏差也会造成严重的影响。由于火车的运行导致的门移动出于安全原因,显而易见的是列车门在列车运行的时候应是关闭的。在外力作用在门上时,门不应该出现明显的位移。例如,当火车通过隧道或乘客靠在门上时。当这些情况发生时,该系统应进一步推到锁定位置。例:车速160km/h:运行的火车在一米的距离上运行速度为200km/h倚靠乘客:800N,400N每扇门因为车速产而添加到模型中的力如下图所示图8作用在门板上的力与门位移的关系最大侧向位移约为1mm。制导机制的最大位移约为1000纳米。结果表明,门应该被进一步推到锁定位置。总结机械、气动、电子系统都集成在一个模型中的SM90门系统多体模型已经被开发出来了。虽然模型需要依据真实情况进行改善,但仿真结果还是具有前瞻性的。进一步改进模型必须综合包括气动室中的橡胶密封件的摩擦和减压阀速度的实施。它已被证明,目前的模式是有能力处理各种现实生活中的问题与现有的门系统的运作。该模型的初步结果将可用于显示多体仿真的好处,为今后改进SM90列车门系统打下基础。Simulation of an SM90 door system in ADAMSEdward de Jong, Christiaan WattlNedTrain Consulting BVIntroductionNowadays the Dutch railways (NS) deals with a strong increase of the number of train passengers ofapproximately 6 percent per year. This means that the availability and reliability of the existing rollingstock is of major importance for the operator NS Passengers. Also the efficiency during train operationwill have its impact on the daily train services. The most important measure to indicate the efficiency ofthe train service is by means of the number of technical primary delays. This means the number ofdelays caused by a (technical) failure which directly effect the train operation and results in a delay ofmore then 3 minutes.When travelling by train, the travelling time is determined by aspects like travelled distance,braking/accelerating performance as well as the stopping time at the intermediate stations. This time isdetermined by the number of passengers leaving or entering the train, the door geometry, and the openingand closing movements of the doors. The stop length for stop trains varies from approximately 60seconds to 180 seconds. The amount of time needed to open or close the doors is approximately 6seconds. This means that the time needed to operate the door can be as high as 20% of the total stoppingtime. Any limitation of this value will lead a direct decrease of the stopping time and results in a betterperformance.At the end of the closing and opening movement, the door is pushed in a overcentered position, resultingin a pretension of the system. The position and condition of the rubber stops define the amount of pretension in the door system in the closed or opened position. In case these stops are degenerated by wear orsettlement or when the position is modified during maintenance, this can result in operating failures. Thedoor can not be closed and locked or does not stay in the open position. Both failures lead to delays in thetrain service and passenger discomfort while doors must be excluded from operation.While closing the doors an obstacle inhibition device is active which detects possible objects between thedoor blades. A change of sign in the speed of the door movements indicates a possible object between thedoor blades, resulting in the doors automatically being opened. However the characteristics of the objectdefines the resulting response of the doors and will not automatically lead to a reverse speed of the doorblades. In that case the closing movement will not be stopped resulting in possible passenger injury orhazardous situations. Reducing the closing time of the door will therefore require also a review of theproper operation of the obstacle inhibition system. This safety system is only operative for object largerthen 65-70 mm. Smaller object will not be detected and the door will not be opened.Purpose of this investigationWith NS Passenger being our most important client we are actively looking for any possibilities andimprovements which are beneficial to our client. As NedTrain Consulting is specialized in the rollingstock we have a clear look at the possibilities nd restrictions of the various train systems. With theongoing technical possibilities and developments, the help of multi body software programs will give theopportunity to show the benefits by improving the functionality of the system. Because of the complexthree dimensional mechanism of a door system and the interaction of various fields of engineering(mechanics, electrics and pneumatics) previous analysis methods proved to be limited to a certaincomplexity level. It is assumed that a multi body model will give insight in the various phenomena duringdoor operation.The following goals are defined: Improved insight in the door opening and closing action with varying geometric properties Safety failure analysis Improvement of the obstacle inhibition device controller Overhaul optimisation Investigate the feasibility and benefits of an improved controller. Door movements due to train passage and wind forces Door movements due to passenger induced forcesTo determine the added value of simulation, an ADAMS model of a door system of an SM90 train hasbeen developed. This presentation will focus on the first steps of development of the model and showingthe feasibility to get to the above mentioned goals. The results will be used to convince NS Passenger ofthe potentials of these improvements in door system operation.System descriptionThe elementary working principle of a SM 90 swing-plug door system can be explained by figure 1.Figure 1 SM 90 door systemPushing an open or close button activates a microprocessor and puts full pressure on the drivingcompartment of a torque cylinder. To increase the speed of the door, the exhausting compartment of thiscylinder is connected with the atmosphere via a depressurisation valve which is pulse width modulated.The microprocessor controls the depressurisation by varying this outflow. The momentary outflow controlis found on the basis of the angular velocity of the door and a non-linear controller. The microprocessorcan reduce the speed of the door by raising the pressure in the exhausting department using inflow controlof a pressurisation valve. This pressurisation valve is activated in case the angular velocity is far too highand thereby exceeds a certain threshold value. It is a general rule that by controlling the exhaustingcompartment, the stick-slip phenomena are minimized.scylpopnVopnTopnpsltVsltTsltP_omgevingnozzle_slt1G_slt1phi_slt1P_reservoirnozzle_slt10G_slt10phi_slt10P_reservoirnozzle_opn10G_opn10phi_opn10P_omgevingnozzle_opn1G_opn1phi_opn1openzijdesluitzijdezuigercilinderscylpopnVopnTopnpsltVsltTsltP_omgevingnozzle_slt1G_slt1phi_slt1P_reservoirnozzle_slt10G_slt10phi_slt10P_reservoirnozzle_opn10G_opn10phi_opn10P_omgevingnozzle_opn1G_opn1phi_opn1openzijdesluitzijdezuigercilinderFigure 2 Torque cylinderThe pressure difference leads to a displacement of the piston in the torque cylinder.This displacement results (via a gear-rack transmission) in a rotation of the cylinder. A rod-linkagetranslates this rotation into a transportation of the two door leaf mechanisms. In this way the position islinked (by means of a non-linear mechanical transmission) to a uniquely defined position of the door. Theangular displacement of the torque cylinder is measured by means of a displacement sensor. on the basisof this angular information the microprocessor control the time-dependent position of the torque cylinderand thereby the position of the door system. Figure 3 shows a graphical representation of the model.Figure 3 ADAMS door modelThe simulation model is able to reproduce the opening and closing action of the door. It consists of themechanical door system (door blades, levers, seals, stops) pneumatic units (piston and high pressurechambers, pneumatic valves) and electronic units (measuring and control part). All systems have beenmodelled within the ADAMS/View environment. For the pneumatic system the Saint Vennant equationshave been used for the state description of the gas medium in the chambers.The model has been verified with measurement results. Figure 4 shows the response of the system duringa closing operation.Figure 4 Measured response during closing operationFigure 5 Calculated response during closing operationDuring opening the pressure in the opening chamber increases quickly from 1 bar to 10 bar, while thepressure in the closing chamber decreases and is controlled by the controller to maintain the desired doormovement. The pressure at the opening side changes a little due to the movement of the piston resulting ina volume increase. This phenomena is clearly visible during start of the opening movement as themechanism moves through the overcentering position resulting in a high opening speed at a relieve smallchamber volume. At t=5 s the door is closed and the opening movement starts. The measured andcomputed response show good correspondence. When in overcentering position the pressure temporarilyincreases which is in the measured response more visible then for the calculated response. This is due tothe existing of a bypass valve which limits the fast decreasing pressure by connecting the closing chambertemporarily with the high pressure (10 bar) reservoir. This valve has not yet been modelled in thecalculation program.Door settlementDuring the life of the train the position of the stops on the door and coach structure can change due towear, plastic deformation of rubber or steel components or maintenance operations. It is known frompractice that a false position of these stops can lead to doors not being closed or an insufficient pretensionof the door in the closed position. Also the guidance mechanism of the door blades has shown strengthfailures due to this phenomena.To study this behaviour the position of the stops have been varied by 1 mm. Figure 6 and figure 7 belowshow the resulting pressures in the opening and closing chambers as well as the forces exerted on thebump stops (displayed for opening action only).Figure 6 Calculated response with varying bump stop position: pressuresFigure 7 Calculated response with varying bump stop position: forcesIt is clear that the pressure show only deviations form the standard situation at the end of the opening orclosing movement. The forces on the bump stops and as a result also on the guidance mechanism of thedoor blades show an increase of approximately 190%. This indicates the serious implications of smalldisturbance of the bump stop position.Door movements due to train passageFor safety reasons it is obvious that the door should be closed at all times when the train is moving. Nosignificant displacement should occur as a results of external forces on the door blades, e.g. when passingtrain, tunnel passage or passenger leaning on the door. When these situations occur the system should bepushed further into the locking position. As an example the following requirements are used: At vehicle speed 160 km/h: passing train with 200 km/h at 1 m distance Leaning passengers: 800 N, 400 N per door bladeThe resulting forces where added to the model with a short delay between the two door blades as a resultof the vehicle speed. The resulting forces are show in the figure below:Figure 8 Door movements with external forces on door bladesThe maximum lateral displacement is approximately 1 mm. The maximum moment in the guidancemechanism of the door is approximately 1000 Nm. The results show that the doors are pushed further intothe locking mechanism.ConclusionA multi body model of a SM90 door system is developed where the mechanical, pneumatic and electricsystems are integrated in one model. Although the model needs improvements to fully represent the reallife situation, the simulation results up till now are promising. Further model improvement have to beintegrated including friction of the rubber seals in the pneumatic chambers and the implementation of thespeed reducing valve.It has been shown that the current model is capable to deal with the various real life problems with theexisting door system currently in operation by Dutch Railways. The preliminary results of the model willbe used to show the benefits of multi body simulation for future improvement of the SM90 train doorsystem.1NTDPA4 - P 1European ADAMS User ConferenceNovember 15-16 2000, RomeSimulation of an SM90 doorsystem in ADAMSSimulation of an SM90 doorsystem in ADAMSEdward de Jong, Christiaan WattlNTDPA4 - P 2European ADAMS User ConferenceNovember 15-16 2000, RomeIntroduction to NedTrain ConsultingIntroduction to NedTrain Consulting Formerly NS Materieel Engineering Subsidiary of Netherlands Railways (NS) Rolling stock engineering and consultancy 200 qualified employees 50% owner of ADAMS/Rail2NTDPA4 - P 3European ADAMS User ConferenceNovember 15-16 2000, RomeOperational issues:Door controller: up to 20% needed for opening/closingmovementTechnical Primary Delays (TPD): Decreased reliability through varying door settlement Liability: increases risk of passenger injury throughobstacle inhibition system Geometric properties Door movements due to external forcesFeasibility is investigated by using simulationNTDPA4 - P 4European ADAMS User ConferenceNovember 15-16 2000, RomeADAMS simulationsADAMS simulationsSM90 door system: first controlled door systemGoals: Define maintenance requirements Reduce opening/closing time Minimize forc
- 温馨提示:
1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
2: 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
3.本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

人人文库网所有资源均是用户自行上传分享,仅供网友学习交流,未经上传用户书面授权,请勿作他用。