

免费预览已结束,剩余9页可下载查看
下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
-10 10 30 50 70 00.511.52 羊只数量(万只) 草场植被指数 2020 年兰州市高三诊断考试 (文数文数) 第第 I 卷卷 一、选择题(本大题共选择题(本大题共 12 小题,每小题小题,每小题 5 分,共分,共 60 分)分) 1.已知集合0,1,2,3,4,5A=, * 2 ,Bx xn nN=,则AB =( ) . 0,2,4A . 2,4B . 1,3,5C . 1,2,3,4,5D 2.已知复数 5 2 2 i z i =+ ,则z =( ) . 5A .5B .13C . 13D 3.已知非零向量, a b,给定:pR ,使得ab=,:q abab+=+,则p是q的( ) . A充分不必要条件 .B必要不充分条件 .C充要条件 .D既不充分也不必要条件 4.若 2 1tan 57 2 2sincos 1212 tan 2 =,则tan=( ) .4A .3B .4C . 3D 5.已知双曲线() 22 22 10,0 xy ab ab =的一条渐近线过点()2, 1,则它的离心率是( ) 5 . 2 A . 3B . 5C .2 3D 6.已知集合 46911 , 55555 A = ,从A中任选两个角,其正弦值相等的概率是( ) 1 .10A 2 . 5 B 3 . 5 C 3 .10D 7.近五年来某草场羊只数量与草场植被指数两变量间的关系如表 1 所示,绘制相应的散点图,如图 1 所示: 表 1 图 1 年份 1 2 3 4 5 羊只数量 (万只) 1.4 0.9 0.75 0.6 0.3 草地植被 指数 1.1 4.3 15.6 31.3 49.7 根据表 1 及图 1 得到以下判断:羊只数量与草场植被指数成减函数关系;若利用这五组数据得到的两 变量间的相关系数为 1 r,去掉第一年数据后得到的相关系数为 2 r,则 12 rr;可以利用回归直线方程, 准确地得到当羊只数量为 2 万只时草场植被指数。以上判断中正确的个数是( ) .0A .1B .2C .3D 8.已知函数( ) () 2 ln1f xx=+,且 () 0.2 0.2af=,() 3 log 4bf=, 1 3 log 3cf = ,则, ,a b c的大小关 系为( ) . Aabc .Bcab .C cba .Dbca 9.已知圆锥的顶点为A,高和底面圆的半径相等,BE是底面的一条直径,点D为底面圆周上的一点,且 60oABD=,则异面直线AB与DE所成角的正弦值为( ) 3 . 2 A 2 . 2 B 3 . 3 C 1 . 3 D 10.已知函数( )()()sinsincos0f xxxx=+,若函数( )f x的图象与直线1y =在()0,上有3个 不同的交点,则的范围是( ) 1 3 ., 2 4 A 1 5 ., 2 4 B 5 3 ., 4 2 C 5 5 ., 4 2 D 11.已知点()4, 2M , 抛物线 2 4xy=,F为抛物线的焦点,l为抛物线的准线,P为抛物线上一点, 过P 做PQl,点Q为垂足,过P做FQ的垂线 1 l, 1 l与l交于点R,则QRMR+的最小值为( ) .12 5A + .2 5B . 17C .5D 12.已知定义在R上的函数( )f x,( ) fx是( )f x的导函数吗,且满足( )( ) 2x xfxf xx e=,( )1fe=, 则( )f x的最小值为( ) . Ae .Be .C 1 e .D 1 e 第第 II 卷卷 二、填空题(本大题共填空题(本大题共 4 小题,每小题小题,每小题 5 分,共分,共 20 分)分) 13.已知函数( ) 2 ,1 21,1 x x f x xx = + ,则 2 3 log 2 ff = _. 14.已知向量, a b满足2b =,向量, a b夹角为120o,且( ) abb+,则向量ab+=_. 15. 在ABC中,, ,a b c分别为角, ,A B C所对的边,且 222 2cabab=+,8a =, 1 sin 23 A =,则 c =_. 16.大自然是非常奇妙的,比如蜜蜂建造的蜂房,蜂房的结构如图所示,开口为 正六边形ABCDEF,侧棱 AA、 BB、 CC、 DD、 EE、 FF相互平行且 与平面ABCDEF垂直,蜂房底部由三个全等的菱形构成,瑞士数学家克尼格利 用微积分的方法证明了蜂房的这种结构是在相同容积下所用材料最省的,因此, 有人说蜜蜂比人类更明白如何用数学方法设计自己的家园.英国数学家麦克劳林 通过计算得到 109 2816 o BC D=.已知一个蜂房中 5 3BB =,2 6AB =, tan54 44082 o =,则此蜂房的表面积是_. 三三、解答题、解答题 17.(本小题满分 12 分) 在等差数列 n a中, 1 8a = , 24 3aa=. (1)求数列 n a的通项公式; (2)设 () () * 4 12 n n bnN na = + , n T为数列 n b的前n项和,若 9 5 n T =,求n的值. 18.(本小题满分 12 分) 如图, 在四棱锥PABCD中, 底面ABCD为平行四边形, 点P在面ABCD内的射影为A,1PAAB=, 点A到平面PBC的距离为 3 3 ,且直线AC与PB垂直. (1)在棱PD上找一点E,使直线PB与平面ACE平行,并说明理由; (2)在(1)的条件下,求三棱锥PEAC的体积. 19.(本小题满分 12 分) 甘肃省是土地荒漠化较为严重的省份,一代代治沙人为了固沙、治沙,改善生态环境,不断地进行研究与 实践, 实现了沙退人进.2019 年, 古浪县八步沙林场“六老汉”三代人治沙群体作为优秀代表, 被中宣部授予“时 代楷模”称号,在治沙过程中为检测某种固沙方法的效果,治沙人在某一实验沙丘的坡顶和坡腰各布设了 50 个风蚀插钎,以测量风蚀值.(风蚀值是测量固沙效果的指标之一,数值越小表示该插钎处被风吹走的沙层 厚度越小,说明固沙效果越好,数值为 0 表示该插钎处没有被风蚀).通过一段时间的观测,治沙人记录了 坡顶和坡腰全部插钎测得的风蚀值(所测数据均不为整数) ,并绘制了相应的频率分布直方图. (1)根据直方图估计“坡腰处一个插钎风蚀值小于 30”的概率; (2)若一个插钎的风蚀值小于 30,则该数据要标记“*”,否则不标记.根据以上直方图,完成列联表: 标记 不标记 合计 坡腰 坡顶 合计 并判断是否有 95%的把握认为数据标记“*”与沙丘上插钎所布设的位置有关? 附: () ()()()() 2 2 n adbc K abcdacbd = + , () 2 P Kk 0.050 0.010 0.001 k 3.841 6.635 10.828 20.(本小题满分 12 分) 已知点F为椭圆() 22 22 10,0 xy ab ab +=的一个焦点,点A为椭圆的右顶点,点B为椭圆的下顶点,椭 圆上任意一点到点F距离的最大值为3,最小值为1. (1)求椭圆的标准方程; (2)若,M N在椭圆上但不在坐标轴上,且直线AM/ /直线BN,直线AN、BM的斜率分别为 1 k和 2 k, 求证: 2 12 1k ke=(e为椭圆的离心率). 21.(本小题满分 12 分) 已知函数( ) 2 11 2 3ln 22 f xxaxx=+(aR且0a ). (1)当2 3a =时,求曲线( )yf x=在点( )()1,1f处的切线方程; (2)若0a ,讨论函数( )f x的单调性与单调区间; (3)若( )yf x=有两个极值点 12 ,x x,证明:( )() 12 9lnf xf xa+. 22.【选修 4-4:坐标系与参数方程】 (本小题满分 10 分) 在平面直角坐标系xOy中,直线l的参数方程为 2 1 2 2 2 2 xt yt = =+ (t为参数) ,以坐标原点O为极点,x轴 的正半轴为极轴建立极坐标系.曲线 1 C的极坐标方程为 2 2cos 4 =+ ,曲线 2 C的直角坐标方程为 2 4yx=. (1)若直线l与曲线 1 C交于,M N两点,求线段MN的长度; (2)若直线l与x轴,y轴分别交于,A B两点,点P在曲线 2 C上,求AB AP的取值范围. 23. 【选修 4-5:不等式选讲】 (本小题满分 10 分) 已知函数( )122f xxx= +,( )22g xxxaa=+. (1)求不等式( )4f x 的解集; (2)对 1 xR, 2 xR,使得( )() 12 f xg x成立,求a的取值范围. 2020 年高三诊断考试试题答案 数数 学学(文文科科) 1B2A3B4C5A6B7B8D9A10C11D12D 11 【解析】根据抛物线定义PFPQ= 1 l,为 FQ 的垂直平分线 RFRQ=5QR + MR = FRMRFM,+=故选 D. 12【解析】由 x exxfxxf 2 )(-)(,构造函数 x xf xF )( )(,则 x e x xfxxf xF 2 )(-)( )(,所以可以设cexF x )(,即 cxxexfce x xf xx )( )( ,,又因为ef)(1得0c,所以 x xexf)(,由 01)()(xexf x 得1x且1x时, 0)(xf)(xf在),(1上为减函数, 1x时, 0)(xf)(xf在),(1上为增函数,所以 e fxf 1 1 min )()(. 故答案为 D. 1341461516.216 2 16 【解析】连接DBBD、,则/DBBD,26DBBD DCOB为菱形,2 084454tan, 1628109DCB 6 2 23 2 084454tan 2 1 2 DB OC33CB 34 22 BCCBBBCC227 2 )3435(62 CCBB S梯形 2216266 2 1 32276 表 S . 17 【解析】 ()设等差数列 n a的公差是d,由 421 3, 8aaa得: )38(38dd解得2d,所以nan210.6 分 9 2020.4 ()设) 1 11 (2 )22( 4 )12( 4 nnnnan b n n , 5 9 ) 1 1 1 (2 n Tn 得到 n=9.12 分 18 【解析】 ()点E为PD中点时直线PB与平面ACE平行. 证明:连接BD,交AC于点O,则点O为BD的中点,因为点E为PD中点, 故OE为PDB的中位线,则PBOE /,OE平面ACE,PB平面ACE,所以PB与平 面ACE平行.5 分 ()根据题意PBAC ,PA底面ABCD,AC底面ABCD,则有PAAC , PPBPA,所以AC平面PAB,则ABAC 设xAC , 3 3 2 1 2 2 1 3 1 11 2 1 3 1 2 xxVV PBCAACBP ,得1AC 则 12 1 111 2 1 3 1 2 1 2 1 ACDPEACP VV.12 分 19 【解析】 ()设“坡腰处一个插钎风蚀值小于 30”为事件 C ( )0.8 0.16 0.360.6P C=+=.4 分 ()完成列联表如下: 标记不标记合计 坡腰302050 坡顶203050 合计5050100 根据列联表,计算得: 841. 34 50505050 )20203030(100 2 2 K 所以有 95%的把握认为,数据标记“*”与沙丘上插钎所布设的位置有关.12 分 ()椭圆的标准方程为: 22 1 43 xy +=.5 分 ()由可知(2,0), (0,3)AB- ,设 AM 的斜率为 k,则 BN 斜率也为 k 故直线 AM 的方程为(2)yk x=-,直线 BN 的方程为3ykx=- 由 22 3412 (2) xy yk x += =- 得 222 34(2)12xkx+-=,即 2222 (3 4)1616120kxk xk+-+-= 解得2x =或 2 2 816 3 4 k x k - = + 2 22 81612 () 3 43 4 kk M kk - , + , 由 22 3412 3 xy ykx += =- 得 22 34(3)12xkx+-=,即 22 (3 4)8 30kxkx+-= 解得0 x =或 2 8 3 3 4 k x k = + 2 22 8 34 33 3 () 3 43 4 kk N kk - , + , 2 2 2 1 2 2 2 2 22 2 2 4 33 3 3(43) 3 4 8 32(44 33) 2 3 4 12 3 3(44 33) 3 4 862(43) 3 4 k k k k kkk k k kk k k kk k - - + = -+ - + - + -+ + = - + 2 1 2 3 1 4 kke= -=-.12 分 21 【解析】 ()因为32a时, , 2 1 2 1 ln3232 2 xxxxf-)(所以,x x xf-)( 32 32 那 么32111)(,)(ff, 所 以 曲 线)(xf在)(,(11f处 的 切 线 方 程 为 : ),(1132xy即:0132 yx.4 分 ()因为, 32 32 2 x axx x x a xf -)(由032 2 axx可得: 当0412a,)3 , 0(a时,有,33,33 21 axax满足0 21 xx, , 0,0 12 )()时)和(,(xfxxx 即)上)和(,)在(,0 12 xxxf为减函数; , 0, 12 )()时(xfxxx即)上,)在( 12 xxxf为增函数. 当003)(,时,xfa恒成立,所以),)在(0 xf为减函数 综上可知: 当30 a时,在)和(,(,33330aa上)(xf为减函数, 在)(aa33 ,33上,)(xf为增函数; 当3a时,在),(0上,)(xf为减函数.8 分 ()因为)(xfy 有两个极值点, 21 xx、则0 32 2 x axx xf)( 有两个正根, 21 xx、则有,0, 32, 0412 2121 axxxxa即),( 30a, 所以7ln1 2 1 ln32 2 2 2 1212121 aaaxxxxaxxxfxf)(-)()()()( 若要,)()(axfxfln9 21 即要02lnlnaaaa 构造函数:2lnlnxxxxxg)(,则 x xxg 1 )( ln,易知),)在(30 xg上为增函数 且02ln2, 011 2 1 )()(gg,所以存在 0 000 1 ln021 x xxgx即)()使,( 且)单调递减,()()时,(xgxgxx, 01 0 )()时(xgxgxx, 0)2 , 0 单调递增. 所以)(xg在(1,2)上有最小值为)(
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 岚山保安考试题及答案
- 课件显示不全的原因
- 四川省广元市川师大万达中学2025-2026学年高二上学期第一次月考(8月)物理试题
- 酒店工程考试题及答案
- 后勤管理员三级安全教育(班组级)考核试卷及答案
- 精准扶贫考试题及答案
- 进阶物理考试题及答案
- 铸管精整操作工技能巩固考核试卷及答案
- 幻灯机与投影机维修工应急处置考核试卷及答案
- 清罐操作工晋升考核试卷及答案
- GB/T 36713-2018能源管理体系能源基准和能源绩效参数
- GB/T 17769-1999航空运输集装器的管理
- 药品注册审评员考核试题及答案
- 机器人常用手册-系列中文版-epx2900a00使用说明书
- 小学硬笔书法课教案(1-30节)
- optimact540技术参考手册
- 光伏电站组件清洗周边除草治理方案
- 建筑面积测绘报告范本
- 校园物业考评表
- 2019版外研社高中英语选择性必修三单词默写表
- 核质保监查员考试复习题(答案)
评论
0/150
提交评论