




已阅读5页,还剩1页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
(第25题图)AxyBCO1、如图,在平面直角坐标系中,抛物线=+经过A(0,4)、B(,0)、 C(,0)三点,且-=5(1)求、的值;(4分)(2)在抛物线上求一点D,使得四边形BDCE是以BC为对 角线的菱形;(3分)(3)在抛物线上是否存在一点P,使得四边形BPOH是以OB为对角线的菱形?若存在,求出点P的坐标,并判断这个菱形是否为正方形?若不存在,请说明理由(3分)解: (广东茂名25题解析)解:(1)解法一:抛物线=+经过点A(0,4), =4 1分又由题意可知,、是方程+=0的两个根,+=, =62分由已知得(-)=25又(-)=(+)4=24 24=25 解得= 3分当=时,抛物线与轴的交点在轴的正半轴上,不合题意,舍去= 4分解法二:、是方程+c=0的两个根, 即方程23+12=0的两个根=,2分=5, 解得 =3分 (以下与解法一相同) (2)四边形BDCE是以BC为对角线的菱形,根据菱形的性质,点D必在抛物线的对称轴上, 5分 又=4=(+)+ 6分 抛物线的顶点(,)即为所求的点D7分 (3)四边形BPOH是以OB为对角线的菱形,点B的坐标为(6,0),根据菱形的性质,点P必是直线=-3与抛物线=-4的交点, 8分 当=3时,=(3)(3)4=4, 在抛物线上存在一点P(3,4),使得四边形BPOH为菱形 9分 四边形BPOH不能成为正方形,因为如果四边形BPOH为正方形,点P的坐标只能是(3,3),但这一点不在抛物线上10分2如图,已知二次函数yx2bxc的图象经过A(2,1),B(0,7)两点(1)求该抛物线的解析式及对称轴;(2)当x为何值时,y0?(3)在x轴上方作平行于x轴的直线l,与抛物线交于C、D两点(点C在对称轴的左侧),过点C、D作x轴的垂线,垂足分别为F、E.当矩形CDEF为正方形时,求C点的坐标22.解:(1)把A(2,1),B(0,7)两点的坐标代入yx2bxc,得,解得.所以,该抛物线的解析式为yx22x7,又因为yx22x7(x1)28,所以对称轴为直线x1.(2)当函数值y0时,x22x70的解为x12 ,结合图象,容易知道12 x0.(3)当矩形CDEF为正方形时,设C点的坐标为(m,n),则nm22m7,即CFm22m7.因为C、D两点的纵坐标相等,所以C、D两点关于对称轴x1对称,设点D的横坐标为p,则1mp1,所以p2m,所以CD(2m)m22m.因为CDCF,所以22mm22m7,整理,得m24m50,解得m1或5.因为点C在对称轴的左侧,所以m只能取1.当m1时,nm22m7(1)22(1)74.于是,点C的坐标为(1,4)3如图11,已知抛物线与x 轴交于两点A、B,其顶点为C (1)对于任意实数m,点M(m,-2)是否在该抛物线上?请说明理由;(2)求证:ABC是等腰直角三角形;(3)已知点D在x轴上,那么在抛物线上是否存在点P,使得以B、C、D、P为顶点的四边形是平行四边形?若存在,求点P的坐标;若不存在,请说明理由 图11 22解:(1)假如点M(m,-2)在该抛物线上,则-2=m2-4m+3,m2-4m+5=0,由于=(-4)2-415=-40,此方程无实数解,所以点M(m,-2)不会在该抛物线上;(2)当y=0时,x2-4x+3=0,x1=1,x2=3,由于点A在点B左侧,A(1,0),B(3,0)y= x2-4x+3=(x-2)2-1, 顶点C的坐标是(2,-1),由勾股定理得,AC=,BC=,AB=2,AC2+BC2=AB2, ABC是等腰直角三角形;(3)存在这样的点P.根据对角线互相平分的四边形是平行四边形,因此连接点P与点C的线段应被x轴平分,点P的纵坐标是1,点P在抛物线y= x2-4x+3上,当y=1时,即x2-4x+3=1,解得x1=2-,x2=2+,点P的坐标是(2-,1)或(2+,1).4如图,在平面直角坐标系中,已知抛物线经过点(0,4),B(1,0),C(5,0),抛物线对称轴与轴相交于点M(1)求抛物线的解析式和对称轴; (3分)(2)设点P为抛物线()上的一点,若以A、O、M、P为顶点的四边形四条边的长度为四个连续的正整数,请你直接写出点P的坐标; (2分)(3)连接AC探索:在直线AC下方的抛物线上是否存在一点N,使NAC的面积最大?若存在,请你求出点N的坐标;若不存在,请你说明理由 (3分)第25题图25、解:(1)根据已知条件可设抛物线的解析式为,1分 把点A(0,4)代入上式得:, ,2分 抛物线的对称轴是:3分(2)由已知,可求得P(6,4) 5分提示:由题意可知以A、O、M、P为顶点的四边形有两条边AO=4、OM=3,又知点P的坐标中,所以,MP2,AP2;因此以1、2、3、4为边或以2、3、4、5为边都不符合题意,所以四条边的长只能是3、4、5、6的一种情况,在RtAOM中,因为抛物线对称轴过点M,所以在抛物线的图象上有关于点A的对称点与M的距离为5,即PM=5,此时点P横坐标为6,即AP=6;故以A、O、M、P为顶点的四边形的四条边长度分别是四个连续的正整数3、4、5、6成立,即P(6,4)5分法一:在直线AC的下方的抛物线上存在点N,使NAC面积最大设N点的横坐标为,此时点N(,过点N作NG轴交AC于G;由点A(0,4)和点C(5,0)可求出直线AC的解析式为:;把代入得:,则G,此时:NG=-(), = 分当时,CAN面积的最大值为,由,得:,N(, -3) 8分5.如图9,抛物线y(x1)2k 与x轴交于A、B两点,与y轴交于点C (0,3)(1)求抛物线的对称轴及k的值;(2)抛物线的对称轴上存在一点P,使得PAPC的值最小,求此时点P的坐标;(3)点M是抛物线上一动点,且在第三象限 当M点运动到何处时,AMB的面积最大?求出AMB的最大面积及此时点M的坐标; 当M点运动到何处时,四边形AMCB的面积最大?求出四边形AMCB的最大面积及此时点M的坐标 xyOCAB【答案】(1)抛物线的对称轴为直线x1,把C (0,3)代入y(x1)2k得31k k4(2)连结AC,交对称轴于点P y(x1)24 令y0 可得(x1)240xyOCABPx11 x23A (3,0) B (1,0)设直线AC的关系式为:ym xb把A (3,0),C (0,3)代入ym xb得,3mb0 b3 m1线AC的关系式为yx3当x1时,y132P (1,2) 当M点运动到何处时,四边形AMCB的面积最大?求出四边形AMCB的最大面积及此时点M的坐标xyOCABM(3) 设M的坐标为(x, (x1)24)
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 电厂防雨棚施工方案(3篇)
- 学校主题墙施工方案(3篇)
- 新疆化学考试题库及答案
- 北京市门头沟区2023-2024学年八年级上学期期末质量监测历史考试题目及答案
- 安徽省宣城市郎溪县2024-2025学年高一下学期第一次月考数学考试题目及答案
- 写升国旗应用题目及答案
- 小学作文题目试卷及答案
- 第一次买东西作文12篇
- 海燕象征意义与精神力量探究教案
- 我的校园故事300字9篇
- T/CECS 10344-2023绿色装配式边坡防护面层
- 护理分层培训体系构建与应用
- 2025建造师二级考试题库及答案
- 员工自付社保协议书
- 网络直播带货对大学生消费观的影响机制研究
- cvte2107校招笔试题目及答案
- 活鹅宰杀协议书
- AI技术提升医学人才培养质量的探索与实践
- 美宜佳转让协议合同
- 混改公司合同协议模板
- 儿童多种维生素课件
评论
0/150
提交评论