




已阅读5页,还剩81页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1,精编课件,2.圆轴扭转时:,2,精编课件,3,精编课件,低碳钢,?,塑性材料拉伸时为什么会出现滑移线?,铸铁,4,精编课件,铸铁,低碳钢,?,为什么脆性材料扭转破坏时沿45螺旋面断开?,5,精编课件,应力状态的概念及其描述平面应力状态下的应力分析主应力、主方向、最大剪应力三向应力状态特例分析广义胡克定律强度理论结论与讨论应用实例,第五章应力状态、强度理论,6,精编课件,1、应力状态:受力构件内任意点各不同截面方位上的应力情况,研究点的应力状态的方法:取单元体的方法,2、单元体:围绕受力构件内任意点切取一个微小正六面体。,2.两个相互平行侧面上的应力情况是相同的,3.代表该点三个相互垂直方向上的应力情况,第一节应力状态概述,1.单元体各侧面上的应力分布是均匀的。,单元体的特点,7,精编课件,围绕一个受力点可以有无数多个单元体:,3、原始单元体:各侧面上的应力情况为已知,8,精编课件,S平面,9,精编课件,4、主单元体:各侧面上只有正应力作用,而无剪应力作用的单元体,5、主平面:单元体上剪应力为零的面,6、主应力:主平面上作用的正应力。三个主应力按代数值大小排列为:,10,精编课件,单向应力状态:只有一个主应力不等于零,二向应力状态:只有一个主应力等于零,其它两个主应力不等于零。,三向应力状态:三个主应力都不等于零,(平面应力状态),应力状态分类:,11,精编课件,第二节平面应力状态分析,(解析法),1、平衡原理的应用单元体局部的平衡方程,12,精编课件,13,精编课件,剪中有拉,拉中有剪,不仅横截面上存在应力,斜截面上也存在应力,结论:,14,精编课件,在单元体上两个剪应力共同指定的象限既为主应力1所在象限,15,精编课件,例题1:,已知:单元体各侧面应力x=60MPa,x=20.6MPa,y=0,y=-20.6MPa,求:(1)=-450斜截面上的应力,(2)主应力和主平面,16,精编课件,x=60MPa,x=20.6MPa,y=0,y=-20.6MPa,17,精编课件,过一点不同方向面上应力的集合,称之为这一点的应力状态,应力,指明,2、应力的三个概念:,应力的点的概念;应力的面的概念;应力状态的概念.,18,精编课件,单元体的两个相互垂直截面上的正应力之和为常数,19,精编课件,例题3:,求(1)主应力、主平面、画主单元体(2)=-37.50斜截面上的应力情况,并画单元体.,x=40MPa,y=-20MPa,x=-30MPa,(MPa),20,精编课件,x=40MPa,y=-20MPa,x=-30MPa,21,精编课件,图示一矩形截面简支梁,在跨中有集中力作用。已知:P=100KN,L=2m,b=200mm,h=600mm,=400。求:离左支座L/4处截面上C点在400斜截面上的应力。,例题4:,P,解:,C,22,精编课件,23,精编课件,图解法(应力圆),第三节平面应力状态,24,精编课件,1.应力圆的画法,1.在坐标系中,,2.连D1D2交轴于c点,即以c点为圆心,cd为半径作圆。,(x,x),(y,y),量取横坐标OB1=x,,纵坐标B1D1=x得到D1点。,该点的横纵坐标代表单元体以x轴为外法线方向面上的应力情况。同样方法得到D2点。,25,精编课件,A,D,E点(横、纵坐标):代表了斜截面上的正应力和剪应力,26,精编课件,点面对应应力圆上某一点的坐标值对应着单元体某一截面方向上的正应力和剪应力,2、几种对应关系,27,精编课件,转向对应、二倍角对应,转向对应半径旋转方向与方向面法线旋转方向一致;二倍角对应半径转过的角度是方向面旋转角度的两倍。,28,精编课件,2、几种对应关系,点面对应应力圆上某一点的坐标值对应着微元某一方向上的正应力和剪应力;转向对应半径旋转方向与方向面法线旋转方向一致;二倍角对应半径转过的角度是方向面旋转角度的两倍。,29,精编课件,利用三角恒等式,可以将前面所得的关于和t的计算式写成方程:,3、应力圆方程,=,圆方程:圆心坐标半径,30,精编课件,应力圆,=,31,精编课件,d,a,c,32,精编课件,45方向的斜截面上既有正应力又有剪应力,正应力不是最大值,剪应力是最大。,结果表明:,33,精编课件,B,E,34,精编课件,45方向面只有正应力没有剪应力,而且正应力为最大值。,结果表明:,35,精编课件,4、一点处的应力状态有不同的表示方法,而用主应力表示最为重要,请分析图示4种应力状态中,哪几种是等价的,36,精编课件,第四节在应力圆上确定主平面、主应力、面内最大剪应力,2,A,D,主平面:在应力圆上,应力圆与横轴交点对应的面,37,精编课件,主应力:主平面上的正应力,在应力圆上主应力=圆心半径,(主平面定义),主应力表达式:,38,精编课件,应力圆上最高点的面上的剪应力,称为“面内最大剪应力”。,max,面内最大剪应力,39,精编课件,第五节三向应力状态,三向应力状态的应力圆平面应力状态作为三向应力状态的特例,40,精编课件,(至少有一个主应力及其主方向已知),三向应力状态特例,41,精编课件,三向应力状态的应力圆,42,精编课件,43,精编课件,平行于1的方向面其上之应力与1无关,于是由2、3可作出应力圆I,平行于2的方向面其上之应力与2无关,于是由1、3可作出应力圆II,平行于3的方向面其上之应力与3无关,于是由1、2可作出应力圆III,44,精编课件,在三组特殊方向面中都有各自的面内最大剪应力,即:,一点处应力状态中的最大剪应力只是、中最大者,即:,45,精编课件,(1),(3),平面应力状态特点:,46,精编课件,200,300,50,max,平面应力状态作为三向应力状态的特例,47,精编课件,200,50,O,300,50,48,精编课件,例题5:,试用解析法、图解法求:主单元体、max。,49,精编课件,主应力=圆心半径,50,精编课件,例6:,试用图解法求主应力、max。,主应力=圆心半径,51,精编课件,一轴拉试件,横截面为405mm2的矩形。在与轴线成450的斜截面上剪应力=150MPa时试件上出现滑移线。求:此时试件所受轴向拉力P的值。,例题7:,解:原始单元体为单向应力状态,即:x=s,y=0,=0,52,精编课件,例8:,圆轴发生扭转变形时,最大拉应力发生在()截面上,最大剪应力发生在()截面上。,塑性材料:,材料被剪断,断口平齐,脆性材料:,材料被拉断,断口与轴线450角,横,斜,53,精编课件,已知:A点处截面AB、AC的应力如图,(单位:MPa),试用图解法确定该点处的主应力及所在截面方位.,量得:1=70MPa,2=10MPa,3=0,量得:20=470,0=23.50,54,精编课件,例题10:在三向应力状态中,若1=2=3,并且都是拉应力.试画应力圆.,1=2=3=0,=0,=0,55,精编课件,例题16:承受内压薄壁容器任意点的应力状态,56,精编课件,1、横向变形与泊松比,-泊松比,第六节广义胡克定律,57,精编课件,2、三向应力状态的广义胡克定律叠加法,主应力和主应变的方向重合。123,58,精编课件,59,精编课件,图示一钢质杆直径d=20mm,已知:A点在与水平线成600方向上的正应变600=4.110-4,=0.28,E=210GPa.求:荷载P的值,例题12:,60,精编课件,一受扭转的圆轴,直径d=2cm,=0.3,材料E=200GPa,现用变形仪测得圆轴表面与轴线450方向上的应变450=5.210-4.求:轴上的扭矩T,例13:,注意:x为负值,61,精编课件,N020a工字钢梁受力情况如图,钢材=0.3,E=200GPa,现用变形仪测得梁中性层上K点处与轴线成450方向的应变=-2.610-4。求:此时梁承受的荷载P,例14:,62,精编课件,3、三向应力状态的体积应变,变形前体积:,变形后三个棱边为:,变形后体积:,体积应变:,63,精编课件,轴向拉伸或压缩的变形能,变形能,WU,变形比能u:,单位体积内储存的变形能,复杂应力状态的变形比能,64,精编课件,复杂应力状态的变形比能,65,精编课件,+,66,精编课件,67,精编课件,10、11强度理论,是解决复杂应力状态下强度破坏问题的理论(主要考虑材料破坏的原因),强度理论:,材料的破坏形式:(1)脆性断裂;(2)塑性屈服,强度理论:,解释脆性断裂,解释塑性屈服,最大拉应力理论,最大拉应变理论,最大剪应力理论,形状改变比能理论,68,精编课件,最大拉应力理论(第一强度理论),认为:最大拉应力是引起断裂破坏的主要因素。,即认为:无论单元体处于什么应力状态,只要单元体的最大拉应力1达到材料在单向拉伸时的极限拉应力值b,材料就发生断裂。,最大拉应力理论(第一强度理论),69,精编课件,最大拉应变理论(第二强度理论),认为:最大拉应变是引起断裂破坏的主要因素。,最大拉应变理论(第二强度理论),即认为:无论单元体处于什么应力状态,只要单元体的最大拉应变1达到材料在单向拉伸时的极限拉应变b,材料就发生断裂。,70,精编课件,最大剪应力理论(第三强度理论),认为:最大剪应力是引起塑性屈服破坏的主要因素。,即认为:无论单元体处于什么应力状态,只要单元体的最大剪应力max达到材料在单向拉伸时的极限剪应力s,材料就发生塑性屈服破坏。,最大剪应力理论(第三强度理论),71,精编课件,形状改变比能理论(第四强度理论),认为:形状改变比能是引起屈服破坏的主要因素。,即认为:无论单元体处于什么应力状态,只要单元体的形状改变比能达到材料在单向拉伸时的形状改变比能极限值,材料就发生塑性屈服破坏。,形状改变比能理论(第四强度理论),72,精编课件,相当应力,73,精编课件,74,精编课件,应用举例,几种简单应力状态的强度条件,(解决工程中实际问题),75,精编课件,塑性材料正应力强度条件:,梁的强度条件,1、正应力强度条件:,塑性材料:由于塑性材料的拉=压,为使最大工作拉应力和压应力同时达到,梁截面通常做成对称于中性轴:,(单向应力状态),76,精编课件,脆性材料:由于拉压,为了充分利用材料,通常将截面做成不对称于中性轴的形状。,设计时尽量使中性轴靠近受拉边。,对脆性材料进行强度校核时,不仅需要验算最大弯矩所在截面上的应力情况,有时还需验算与最大弯矩符号相反的较大弯矩截面上的应力情况,77,精编课件,2、剪应力强度条件:(纯剪切应力状态),78,精编课件,例题11:试用第三强度理论分析图示三种应力状态中哪种最危险?,79,精编课件,已知:和
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025辽宁鞍山市立山区教育局面向应届毕业生校园招聘2人模拟试卷及1套完整答案详解
- 2025江苏苏州凌晔进出口有限公司招聘7人考前自测高频考点模拟试题附答案详解(典型题)
- 2025赤峰龙韵城市建设有限公司所属子公司员工招聘21人模拟试卷及答案详解(名校卷)
- 2025年湖南常德津市市人民医院公开招聘专业技术人员16人模拟试卷及答案详解(名校卷)
- 2025年5月广西悦桂田园文化旅游投资有限责任公司招聘13人笔试题库历年考点版附带答案详解
- 2025湖北巴东县溪丘湾乡人民政府招聘公益性岗位工作人员11人模拟试卷及1套参考答案详解
- 2025广东省能源集团西北(甘肃)有限公司招聘18人模拟试卷及答案详解(夺冠系列)
- 2025江苏句容市教育局所属学校招聘紧缺教育人才5人考前自测高频考点模拟试题及完整答案详解一套
- 2025北京中国热带农业科学院香料饮料研究所第一批工作人员招聘(第2号)模拟试卷及一套完整答案详解
- 2025年三亚市直属学校赴高校面向2025年应届毕业生招聘81人模拟试卷附答案详解
- 农业生产玉米病虫害田间识别、抗性评价与防治技术
- DZ∕T 0338.2-2020 固体矿产资源量估算规程 第2部分 几何法(正式版)
- 结缔组织教学课件
- 2023年6月新高考天津卷英语试题真题及答案解析(精校打印版)
- 兽医未来职业规划
- 余华读书分享+名著导读《我们生活在巨大的差距里》
- 2023-2024 学年度第一学期第一次月考七年级数学试题
- 中级化学检验工理论考试题库
- 幼儿园红色小故事PPT:抗日小英雄王二小的故事
- YD-T 3775-2020 大数据 分布式事务数据库技术要求与测试方法
- 大学生心理健康教育(第二版)PPT全套完整教学课件
评论
0/150
提交评论