




已阅读5页,还剩26页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1.1锐角三角函数,第一章直角三角形的边角关系,导入新课,讲授新课,当堂练习,课堂小结,第2课时正弦与余弦,北师大版九年级下册数学教学课件,1.理解并掌握锐角正弦、余弦的定义,并进行相关计算;(重点、难点)2.在直角三角形中求正弦值、余弦值.(重点),学习目标,导入新课,复习引入,1.分别求出图中A,B的正切值.,2.如图,在RtABC中,C90,当锐角A确定时,A的对边与邻边的比就随之确定.想一想,此时,其他边之间的比是否也确定了呢?,任意画RtABC和RtABC,使得CC90,AA,那么与有什么关系你能试着分析一下吗?,讲授新课,合作探究,在图中,由于CC90,AA,所以ABCABC,这就是说,在直角三角形中,当锐角A的度数一定时,不管三角形的大小如何,A的对边与斜边的比也是一个固定值,A的对边与斜边的比叫做A的正弦(sine),记作sinA,即,c,a,b,对边,斜边,概念学习,典例精析,例1如图,在RtABC中,B=90,AC=200,sinA=0.6,求BC的长.,解:在RtABC中,,即,BC=2000.6=120.,变式:在RtABC中,C=90,BC=20,求:ABC的周长和面积.,解:在RtABC中,合作探究,任意画RtABC和RtABC,使得CC90,AA,那么与有什么关系你能试着分析一下吗?,在图中,由于CC90,AA,所以ABCABC,这就是说,在直角三角形中,当锐角A的度数一定时,不管三角形的大小如何,A的邻边与斜边的比也是一个固定值,A的邻边与斜边的比叫做A的余弦(cosine),记作cosA,即,c,a,b,对边,斜边,概念学习,锐角A的正弦、余弦和正切都是A的三角函数(trigonometricfunction).当锐角A变化时,相应的正弦、余弦和正切值也随之变化.,定义中应该注意的几个问题:,1.sinA,cosA是在直角三角形中定义的,A是锐角(注意数形结合,构造直角三角形).2.sinA,cosA是一个完整的符号,分别表示A的正弦,余弦(习惯省去“”号).3.sinA,cosA是一个比值.注意比的顺序.且sinA,cosA均0,无单位.4.sinA,cosA的大小只与A的大小有关,而与直角三角形的边长无关.5.角相等,则其三角函数值相等;两锐角的三角函数值相等,则这两个锐角相等.,例2:如图:在等腰ABC中,AB=AC=5,BC=6.求:sinB,cosB,tanB.,提示:过点A作ADBC于D.,如图,梯子的倾斜程度与sinA和cosA有关系吗?,A,sinA的值越大,梯子越_;cosA的值越_,梯子越陡.,陡,小,A,议一议,例3:在RtABC中,C=90,如图,已知AC=3,AB=6,求sinA和cosB.,想一想:我们发现sinA=cosB,其中有没有什么内在的联系?,求:AB,sinB.,变式:如图:在RtABC中,C=90,AC=10,思考:我们再次发现sinA=cosB,其中的内在联系你可否掌握?,如图:在RtABC中,C90,,要点归纳,sinA=cosB,2.在RtABC中,C=90,sinA=,则tanB的值为_.,针对训练,1.在RtABC中,C=90,则下列式子一定成立的是()AsinA=sinBBcosA=cosBCtanA=tanBDsinA=cosB,D,1.如图,在RtABC中,锐角A的对边和邻边同时扩大100倍,sinA的值()A.扩大100倍B.缩小100倍C.不变D.不能确定,2.已知A,B为锐角(1)若A=B,则sinAsinB;(2)若sinA=sinB,则AB.,C,=,=,当堂练习,3.如图,C=90CDAB.,4.在上图中,若BD=6,CD=12.则cosA=_.,()()(),()()(),CDBC,ACAB,ADAC,5.如图:P是边OA上一点,且P点的坐标为(3,4),则cos=_,tan=_.,3,4,P,A,6.如图,在RtABC中,C90,AB=10,BC6,求sinA、cosA、tanA的值,解:,又,10,变式1:如图,在RtABC中,C90,cosA,求sinA、tanA的值,解:,设AC=15k,则AB=17k,变式2:如图,在RtABC中,C90,AC8,tanA,求sinA、cosB的值,A,B,C,8,解:,7如图,在正方形ABCD中,M是AD的中点,BE=3AE,求sinECM.,解:设正方形ABCD的边长为4x,M是AD的中点,BE=3AE,AMDM2x,AEx,BE3x由勾股定理可知,,7如图,在正方形ABCD中,M是AD的中点,BE=3AE,求sinECM.,由勾股定理逆定理可知,EMC为直角三角形.,8如图,在平面直角坐标系内,O为原点,点A的坐标为(10,0),点B在第一象限内,BO=5,sinBOA,(1)求点B的坐标;(2)求cosBAO的值,A,B,H,解:(1)如图所示,作BHOA,垂足为H在RtOHB中,BO5,sinBOA,BH=3,OH4,,点B的坐标为(4,3),8如图,在平面直角坐标系内,O为原点,点A的坐标为(10,0),点B在第一象限内,BO=5,sinBOA,(2)求cosBAO的值,A,B,H,(2)OA10,OH4,AH6在RtAHB中,BH=3,,1.在RtABC中,课堂小结,2.梯子的倾斜程度与sinA和cosA的关系:,sinA的值越大,梯子越陡;cosA的值越小,梯子越陡.,“部编本”语文教材解读“部编本”语文教材的编写背景。(一)教材要体现国家意识、主流意识形态、党的认同,体现立德树人从娃娃抓起。(二)体现核心素养,中国学生发展核心素养包括社会责任,国家认同、国际理解、人文底蕴、科学精神、审美情趣、学会学习、身心健康、实践创新。(三)语文、道德与法制、历史三个学科教材统编是大趋势。(四)“一标多本”教材质量参差不齐,“部编本”力图起到示范作用。二、“部编本”教材的编写理念:(一)体现核心价值观,做到“整体规划,有机渗透”。(二)接地气,满足一线需要,对教学弊病起纠偏作用。提倡全民阅读,注重两个延伸:往课外阅读延伸,往语文生活延伸。(三)加强了教材编写的科学性,编研结合。(四)贴近当代学生生活,体现时代性。“部编本”语文教材的七个创新点:(一)选文创新:课文总数减少,减少汉语拼音的难度。(二)单元结构创新更加灵活的单元结构体制,综合性更强。(三)重视语文核心素养,重建语文知识体系。(四)三位一体,区分不同课型。“教读”、“自读”和“课外阅
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 新能源前期管理办法
- 本项目签证管理办法
- 固废物治理管理办法
- 县债券资金管理办法
- 数据实验室管理办法
- 学生奖学金管理办法
- 村小组公章管理办法
- 审计与安全管理办法
- 新技术投资管理办法
- 图书分享会管理办法
- 智能制造工艺优化技术
- 新生儿科健康宣教手册
- 老旧小区施工安全文明施工方案
- 康复科护士的运动障碍康复与护理
- (完整word版)英语国际音标表(48个)打印版
- JCT640-2010 顶进施工法用钢筋混凝土排水管
- 江民杀毒软件
- 网络安全题库及答案(汇总1000题)-网络安全题库及答案
- 医院满意度调查工作制度(二篇)
- GB/T 33213-2016无损检测基于光纤传感技术的应力监测方法
- GB/T 2652-1989焊缝及熔敷金属拉伸试验方法
评论
0/150
提交评论