免疫放射分析_第1页
免疫放射分析_第2页
免疫放射分析_第3页
免疫放射分析_第4页
免疫放射分析_第5页
已阅读5页,还剩13页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

第九章 核分析技术核物理基础研究的深入发展,积累了大量的核数据,同时也发展了一系列核技术和方法。核分析技术就是根据射线与物质中的原子及原子核的相互作用及运动规律,利用核探测分析手段,将射线与物质相互作用过程中引起的作用效应、次级效应探测后用于研究物质结构,元素组成和空间分布。一定能量的离子束射入介质中时,其能量被吸收的阻止过程和介质材料的元素组成、分子结构(化学、性质生物)都有很强的依赖关系,利用射线的能量损失或部分能量损失的行为,可以实现定性分析、定量分析和结构分析。核分析技术主要有两大类,一类是以超精细相互作用为基础的核分析方法,如穆斯堡尔谱学方法、正电子湮灭、扰动角关联、核磁共振等。另一大类为以加速器(或反应堆)提供的带电离子束、中子流或者带电离子束产生的中子流来进行的分析手段。核分析技术主要包括背散射分析、PIXE、核反应分析,带电粒子及中子活化分析等。第一节 活化分析一、概 述 1936年匈牙利放射化学家Hevesy和Tevi首先创建了活化分析法。活化分析(activation analysis AA)的基础是利用核反应产生放射性,可对样品中的元素作定性分析、定量分析和超微量的定量分析。经过不断改进和发展,目前活化分析法已广泛应用于生命科学(医学、生物学),材料科学、社会科学(考古学,公安司法等)及地质科学等各个科学领域及国防、工业、农业、石油探测等行业领域。 活化分析有几十年的历史了,活化分析的实质是利用一定能量的射线(主要是中子、带电粒子和射线)射入样品中后与待分析的原子核发生核反应过程,使其中的稳定核素发生核反应而转变成放射性核素,通过测量反应产物的放射性衰变,也就是说,测量其衰变过程中放出射线的能量和活度,反推样品中待测原子的种类、含量和空间分布。根据所用射线的种类可以将活化分析分为中子活化分析(neutron activation analysis NAA)、带电粒子活化分析(charged particle activation analysis CPAA)和射线活化分析等三类。进行活化分析需要有辐射源装置、高分辨率的辐射探测仪器和数据分析系统等。如果活化分析单纯用仪器进行,样品不被破坏,称作非破坏性活化分析或仪器活化分析;用化学方法配合仪器进行的活化分析,样品的结构受到化学作用而改变,称作破坏性活化分析或放射化学活化分析。非破坏性多元素活化分析是活化分析的发展趋势。中子活化分析是使样品的待测元素与中子(通常为核反应堆的热中子)发生核反应、通过测量产生的射线强度计算待测元素含量的分析方法。中子活化分析中根据反应道的性质,可以选用中子来自于反应堆的热中子(reactor neutron activation analysis RNAA)或加速器提供的快中子(fast neutron activation analysis FNAA).活化分析的主要优点是:1灵敏度高,对大部分元素的探测极限在10-9 g左右,可以实现样品中微量元素和超微量元素的分析。2以实现无损分析,许多样品(如珍贵文物)非常稀奇,分析过程中不许有损伤,活化分析可以实现这一目标。3在活化过程中,往往有多种元素被激发,可同时测定一个样品中的几种至几十种元素。4可分析的元素很多,除部分轻元素和重元素外,元素周期表中几乎所有的元素都可用活化分析法测定。5利用计算机数据采集和分析系统,易于实现自动分析,快速检测分析。活化分析也存在一些不足,如不能测定化合物的量和分子结构;操作时放射性水平比通常放射性示踪法应用高;设备昂贵;某些分析耗时较长。但是,近年来人们针对上述缺点开发出小型、实用、经济的放射源,如小型中子发生器、小型医用加速器、高通量同位素中子源等,完善计算机的应用及软件开发,为活化分析技术的推广应用提供了条件。二、基 本 原 理 活化分析是用具有一定能量和流强的中子、带电粒子(质子、氘核、粒子等)或高能光子轰击样品,使待测元素发生核反应,测定核反应生成的放射性核素衰变时发生的缓发辐射或核反应时瞬发辐射的分析方法。通过测定射线能量和半衰期进行定性鉴定;测定射线活度进行定量分析。当样品放入反应堆辐照时,待测元素受到热中子的轰击,使它从稳定的原子核变成放射性的原子核,通过衰变,放射性的原子核变成其它稳定的核素。在这一过程中,原子核将放射出射线和射线,用探测器测定射线的能量和强度就可以进行定量分析。如核反应过程:,反映产物 是放射性核素,具有放射性,它的半衰期为26.32小时。通过测定衰变放出的射线的能量和强度就可以反推出的含量。当含有待测元素的样品受到粒子束(例如热中子束)照射时,部分待测核素转变成放射性核素,并且立刻发生衰变,整个反应过程可用下式举例说明: 这样稳定性核(A1)俘获中子(截面为1)而被活化,转变成放射性核素(A2),并按一定的半衰期进行衰变(衰变常数2)为稳定核素(A3)。A1形成A2的速率取决于三个因素:中子通量密度(ncm-2s-1)、俘获中子(活化反应)的截面1和单位面积上靶原子核A1的数量N1。A2的核数量N2在单位时间内的净变化是由A1生成A2的核数减去A2衰变掉的核数。 (9.2)在活化分析中,照射后一般并不立即测量放射性,而是让放射性样品“冷却(Cool)”一段时间,即衰变一段时间后再测量。通过上式运算,并设定t0时N2=0,经过照射时间L和冷却时间L2以后A2放射性活度的计算公式为由于单位时间发生核反应的A1核数与A1核总数相比很少,在实验期间可视作不变量,故有 (9.3) (9.4)放射性核素A2的生长和衰变与半衰期的关系见图9-1。若已知、1、2,实验测得t和A2即可算出N1。上述绝对测量法的描述主要是说明活化分析的基本原理。实际工作中,和1不易测得很精确,A2的绝对值也因几何因子、反散射等因素的影响而不易测准,生物医学实验中用得较少。一般采用相对测量法。相对测量法的要点将在本节最后叙述。活化分析对所测核素有以下基本要求:1 必须具有足够大的反应截面,这样活化分析中产生的放射性核素的产额比较大,2 所生成的放射性核素必须具有足够长的半衰期,3 放射性核素释放出的射线或粒子必须易于测量。三、活化分析应用的核反应和照射源(一)应用的核反应 不同照射粒子引起的核反应不同。根据照射粒子的种类,活化分析可分为以下几类:1中子活化分析(neutron activation analysis NAA)即以中子为照射粒子的活化分析。中子和原子核碰撞可发生下列核碰撞过程;弹性散射(n,n);非弹性散射(n,),俘获反应(n,);核反应(n,p);(n,);核裂变(n,f)。其中(n,)、核反应(n,p)和(n,)三种核反应在活化分析应用中应用很广泛。 (1)(n,)反应 由热中子(thermal neutron,En=0.025 eV)照射发生,引起的核反应都是放能的。在核反应中,靶核俘获一个热中子而转变成激发态复合核。在极短时间内复合核跃迁到较低能级,放出光子。(n,)反应在活化分析中应用最多。热中子活化分析对大多数核素(比氧重的)具有很高的灵敏度,并可同时测定多种元素。不足的是不用于测定比氧轻的元素,设备较为庞大且昂贵。 (2)(n,),(n,p)反应靶核俘获中子,释放出粒子或p的核反应,主要在快中子活化分析中发生。快中子(fast neutron,En1 MeV)产生的核反应大都是吸能的,即存在一定的阈能,只有当中子能量超过该反应的阈能时,才能引起反应。快中子发生器(特别是密封中子管)具有结构简单、操作方便等优点,便于在一般实验室推广。但快中子的活化截面小,中子发生器或同位素中子源的产额都很低,使得灵敏度较热中子活化分析低。快中子活化分析主要用来分析常量或半微量元素,最成功的例子是全身钙量的测定。 2.带电粒子活化分析(charged particle activation analysis CPAA)。带电粒子与物质的作用是一个复杂的过程,与中子或光子相比带电粒子可以引起更多的核反应。常用的带电粒子是:p、d、和3He等,以氘核应用最多,发生的核反应主要是(d,),(d,p)等。如 S(d,)P。带电粒子引起众多核反应的优点在于增加了分析的选择性,也就是说通过选择粒子的能量和种类总能找到一个灵敏度高、受干扰小的核反应应用于活化分析。带电粒子活化分析的主要问题是干扰,包括反应干扰和射线能谱干扰。后者是指由带电粒子引起的许多放射性核素衰变时发射能量相同或相近的射线,在能谱上发生重叠。为了消除干扰,样品经过照射、腐蚀处理后,还需进行放化分离。带电粒子活化分析主要应用于痕量轻元素的测定,其次是重元素的多元素分析3射线活化分析。射线活化分析(ray activation analysis)是用高能光子轰击靶核使之发生核反应,测定放射性核素衰变参数的分析方法。高能光子与原子核发生作用时,可产生3种不同类型的核反应:光致激发(,),光核反应(,n)、(,p)和光致裂变反应(,f)。射线的活化截面大,灵敏度比较高。生物样品中Na、K和Mn的含量很高,选用射线活化分析时这些元素产生的干扰较小,故可进行多元素非破坏性分析。光子还具有较强的穿透力,可以照射较大体积的样品。但射线活化分析需要用电子加速器,分析成本较高。此外,对于大多数元素其灵敏度要比中子活化分析低一二个数量级,这使得该法在痕量元素分析的应用上受到一定限制。样品受照射时产热较高,光子通量的监测和定量计算都比较复杂。所以,射线活化分析一般是作为中子活化分析和带电粒子活化分析的补充,主要用于各种轻杂质元素的仪器分析。(二)照射源用于活化分析的照射源及其特点见9-1表。表9-1 各种照射源及其特点照射源*装置核反应特点热中子(少量是利用超热中子、快中子)反应堆主要是(n,)少量是(n,p)、(n,)、(n,2n)适于各种样品,灵敏度高,可进行无损伤多元素分析,适于常规分析252Cf(n,)装置简便,不需电源,可野外使用,来源少,价格昂贵241Am-Be(n,)装置简便,灵敏度较差14MeV快中子高压倍加器(n,p)、(n,)、(n,2n)等可测定浓度为1/1,000,000水平的元素,产生干扰反应较热中子少带电粒子质子,氘核,3He回旋加速器、直线加速器(p,n)、(p,2n)(p,d)、( p,)(d,n)、( 3He,n)适于C,N,O等轻元素分析,产生发射正电子的短寿命同位素,需化学分离高能射线电子加速器(,n)、( ,2n)、(,p)等可对多种元素进行灵敏度较好的分析,适用于对中子难以活化的元素分析,可进行无损多元素分析*在实际工作中可根据具体实验要求选用合适的照射源四、实验步骤 活化分析全过程大体上可分为4个阶段,见图9-2。图9-2活化分析全过程示意图(一)样品制备和辐照 样品制备是活化分析实验工作的第1步,也是重要的步骤。严格地讲样品制备包括取样和制备(有时还包括贮存)这两个环节。仪器活化分析可省略放化分离。 1取样 取样是指在分析现场,从大量待分析客体之中按一定要求和方法取出少量供活化分析用的样品。取样应具有代表性即供活化分析用的少量样品应能代表被分析的样品,概括起来说,活化分析的取样必须考虑下列三个因素:与被研究的物体以及研究目的有关。活化分析不易分析大块样品,通常取出多份小样品或者使样品均匀化的方法以解决非均匀样品的活化分析。例如,研究的目的是测定肝脏组织中铜的分布,则取样量要小,取样点要多。如果要给出肝脏组织中铜的平均含量,最好的办法是将整个肝脏灰化,再取样分析。与被测元素的性质有关。需要针对待测元素及样品的物理、化学性质,采取相应的措施取样。与分析方法有关。活化分析的几种方法对取样方法各有一定的要求。取样方法是一个复杂的课题,当前活化分析的一个动向就是研究活化的标准取样方法。 2制备 将取来的试样,采取某种物理或化学的方法,制成合乎照射的形式。有的样品中待测元素含量很低,对于这种样品需要预先进行浓集,常用的方法有干燥、灰化、各种层析以及萃取、沉淀等。 3配制标准品 实际应用中活化分析一般采用相对测量法,即取一份元素成分及含量已知的标准品与样品在相同的条件下进行照射并测量,比较两者的结果,推算出样品中待测元素的量。因此标准品的配制是活化分析中一件重要的工作。作为标准品的物品必须满足下列条件:纯度要高,一般均选用“光谱纯”试剂。若标准品照射后还经过放化分离,则分析纯试剂亦可。最好选用金属、氧化物或硝酸盐等,不宜用氯化物、溴化物和硫酸盐,以减少干扰。易溶于实验室中常用的酸。耐热性和抗辐射性要好,不易潮解且容易称量;组分确定,具有化学计量性质。标准品溶液在贮存时浓度要高一些,以保持溶液稳定,避免吸附、挥发、及被容器沾污等影响。照射时标准品的浓度最好与样品中待测元素的浓度相近,并且化学状态尽可能相同。 4取样、制样要防止来自环境、容器和试剂中各种微量元素的污染。器皿吸附、灰化过程等步骤可导致样品丢失。要严格遵守操作规程,控制实验误差。 5辐照 根据射线的种类、粒子通量、照射环境的温度、照射空间的几何形状和大小、照射过程中发生的核反应类型及反应后产生放射性核素的性质等诸多因素来确定样品的照射时间,样品的封装容器。(二)放射化学分离 有些活化的样品测量之前需要进行放射化学分离(简称放化分离),目的是除去干扰的放射性核素。生物样品成分复杂,元素之间浓度差别很大,活化截面也不相同。所以活化后得到的能谱往往也很复杂,相互之间的干扰可能掩盖待测元素的特征峰。经过放化分离后,待测元素呈“放化纯”状态,消除了干扰。 活化分析中,微量放射性核素浓度很低,易被吸附,或形成放射性胶体,或与其他化合物形成共结晶,导致分离困难。为克服低浓度效应,往往于放化分离之前,加入待测放射性核素的稳定同位素作为载体,微量放射性核素与载体发生共沉淀而达到分离。为除去干扰性放射性核素,有时加入干扰性核素的稳定性同位素作为反载体而使之沉淀。载体与待测元素、反载体与干扰性核素都必须处在同一化学状态。 放化分离与普通化学分离相比,有一些不同之处:(1)无需定量分离,因待测元素与载体达到同位素变换平衡后,可以从加入的载体量测得化学回收率进行校正。(2)不易沾污,不受试剂空白的影响。普通化学痕量分析往往要求试剂特别纯,而活化分析只需注意避免照射前不受污染即可。放化分离时一般分析纯级试剂就可达到要求,由于测量的是放射性,试剂中的微量杂质对结果的影响很小。(3)需要考虑辐射防护问题,根据照射后样品放射剂量的大小,来取相应的防护措施。(4)样品在照射过程中,有可能元素的化学状态发生改变。(5)放射性核素发生衰变,需要考虑时间因素。部分活化分析过程中,放化分离是必不可少的步骤。合理地应用放化分离技术对提高活化分析的准确性,减少测量干扰具有重要的意义。近年来,为节省时间,减少放化操作时所受的放射剂量,提高分析工作的可靠性和重复性,已广泛采用了自动放化分离。自动分离系统都是以色谱分离为主。(三)放射性测量 活化分析中的测量仪器主要是Ge(Li)能谱仪和Nal(T1)闪烁能谱仪。前者由于分辨率高,应用更广泛。近年来这些能谱仪大多装备有多道脉冲分析器和微型计算机。 1绝对测量法 绝对测量法是将实验测得的有关参数代入公式(9.3、9.4),直接计算待测元素的量。实际工作中用本法得到的结果受到许多因素的影响,比较繁琐,误差很大。所以目前基本上不采用直接测量法。2相对测量法 相对测量法是将标准品和样品用同样的条件下进行处理,最后分别测量两者的放射性活度,按下式计算待测元素的量: 相对测量法中,样品和标准品用完全相同的条件处理,消除了大部分与核反应参数及实验参数有关的误差,具有较高的准确性。为提高分析的精密度和准确度,要求标准品的基本成分及其含量与待测样品尽可能相同。这样可以减少入射粒子的自屏蔽和射线的自吸收的不同而引起的误差。相对测量法对于大批量样品的多元素分析也有不足之处,制备、照射和测量各标准品的工作较为繁琐,不能测定事先未预期的元素,不适于计算机自动化分析。针对上述问题,人们发展了一种既具有绝对测量法简便性;又不失相对法准确性的单比较器法。单比较器法是仅用一种或几种核素(比较器)作标准,与样品同时辐射,进行多元素分 析的方法。第二节 质子激发X线发射分析质子激发X荧光分析是利用加速器提供的质子束流轰击待测样品,测量样品中受激发原子退激过程中发射的特征X射线(proton induced X-ray emission PIXE)能量和强度的一种元素分析方法。1970年J.B.Johanssen等首先采用本法分析了大气沉降物中的痕量元素。习惯上,X射线发射分析也称为X射线荧光分析(X-ray fluorescence analysis)。带电离子入射到介质中时会导致在介质中的原子激发和电离。原子被电离活激发后,原子的内壳层电子被打掉成为自由电子或跃迁到高激发态,这样一来在原子的内壳层产生空穴。外壳层电子所处的能级的能量比内壳层电子的能量高,当外壳层的电子向内壳层跃迁填充内壳层的空穴时,就会有能量释放出来,这就是原子的退激发过程。原子的退激发过程会引起两种现象发生;一种是发射特征X射线,另一种是发射俄歇电子(auger electron)。 PIXE方法是以加速器产生的带电粒子来激发待测物质的特征X射线,并以高分辨率的半导体Si(Li)探测器进行X射线能谱测量,通过对X射线能谱(从X射线能量就可知样品种类,从谱线强度就可以求得元素的含量)的数据处理即能进行元素的定性、定量分析。由于质子激发 X射线截面较大,而轫致辐射本底又比电子激发时低得多,因而PIXE的检测灵敏度较高(相对灵敏度约1/1 000 000),加之Si(Li)探测器的能量分辨率较好(约150 eV),可多元素同时分析而无损样品,所以样品可以是易挥发的液体,也可以是活细胞。质子比电子或X射线激发得到的X射线能谱的本底小,这是PIXE灵敏度高的主要原因。PIXE能够进行多元素非破坏性快速分析,所需样品量小,特别适于医学生物学应用。一、基本原理(一)特征X射线的产生 当高速质子与靶原子的电子碰撞时,将内层电子打出,原子被电离并在内层留下空穴。外层电子立刻自发跃迁(spontaneous transition),填补内层空穴,同时辐射出特征X射线或俄歇电子。特征X射线的能量等于外层电子结合能与空穴所在壳层结合能的差值,它与入射粒子无关,只与元素的性质、种类有关。如果空穴发生在K层,则发出的光子称为K系特征X射线。同样还有L系、M系特征X射线。每个线系又由多条能量不同的X射线组成。由于原子的每个电子处在不同的能态,产生的特征X射线的能量也各不相同,这样就构成了每种元素的特征X射线谱。用高分辨率的Si(Li)能谱仪探测和记录这些X射线,分析能谱线可以判断元素的种类,从谱线的强度可计算出各元素的量。(二)电离截面和X射线产生截面 在质子轰击下,原子电离的概率称作电离截面。各种元素的电离截面已有理论计算和实际测量值。质子的能量不变,电离截面随原子序数的增加而平滑递减。外层电子填充内壳层空穴时发射X射线的概率叫做该内壳层的荧光产额,它等于发射的X射线数目除以该层最初的空穴数目,与原子序数的增加呈平滑递增关系。原子序数较低的元素,其荧光产额较低,此时俄歇电子的发射概率较大。对于特定内壳层某一条特征X射线而言,X射线产生的截面等于其电离截面与荧光产额的乘积。(三)本 底PIXE测得的X射线能谱常伴有一连续本底,它是限制PIXE灵敏度的主要因素。本底主要来自:(1)次级电子的轫致辐射。高速质子还可使靶原子产生次级电子,次级电子在原子的库仑场中减速而产生轫致辐射。轫致辐射的能谱是连续的,是造成本底辐射的主要原因。当特征X射线的能量大于次级电子的最大能量Tm时,本底辐射活度迅速下降;(2)质子的轫致辐射。质子与靶核库仑场相互作用时也会发生轫致辐射,活度随入射质子能量增加而缓慢下降;(3)核激发态射线的康普顿散射。质子能量过高可能激发靶室的其他材料,伴随核反应产生射线,射线的康普顿散射落在X射线能谱高能区,形成连续辐射本底。以上分析得出:(1)质子能量不宜过大,14MeV最适合;(2)特征X射线能量控制为Tm的1.4至4.0倍。二、实验技术(一)实验装置 PIXE实验所需的设备主要有:1加速器 加速器是提供束流的实验设施,能量为18MeV的静电加速器最适合做PIXE分析。2靶室 靶室为样品辐照的装置,通常样品在真空下辐照,复杂一些的靶室也可以将生物样品置于大气条件下,将加速器提供的束流引出到大气条件下进行辐照测量分析。3测量和分析系统。测量使用Si(Li)X射线谱仪。多道分析器常同计算机连接,实现数据获取和分析自动化。(二)样品的处理 照射前样品需进行预处理,制成适于测量的形式,称作靶。1 靶的制备 靶的制备是PIXE分析中的关键技术之一。厚度小于l mgcm2的样品称为薄靶。医学生物学样品多数制成薄靶。薄靶具有本底小、散热性好、数据处理简单等优点。合格的薄靶应薄而均匀、待测元素有足够浓度并在真空中稳定。常用的薄靶制作方法见表9-2。表9-2 几种生物样品靶的制备方法方法制靶方法优缺点适用范围喷涂法组织样品匀浆,高速喷涂在靶衬上可制成均匀薄膜固体和液体样品切片法冰冻切片或石蜡切片直接粘在衬底上简便、不易污染,元素不易丢失,分布不均匀的样品分析误差较大活检组织和分布均匀的样品干冻法液体样品滴在衬底上,冰冻后真空干燥元素分布均匀,可初步浓缩样品液体和组织样品灰化法高温400C干灰化或低温100C湿灰化,用酸分解样品可使样品均匀浓缩,高温灰化时挥发性元素易丢失,耗费大,费时适用有机物痕量元素分析,元素分布不均匀样品,取样量大消化法常用硝酸、硫酸、过氧酸作消化剂快速,试剂不纯易引进杂质适于有机物痕量元素分析,无机物较多不宜采用2靶衬材料的选择 常用靶衬支持薄靶样品,对靶衬材料的要求是:原子序数低,产生轫致辐射小;机械活度高,耐酸、碱;电传导和热传导性好;纯度高,无重元素杂质;制膜方便。常用的靶衬材料有碳膜和各种塑料膜等。 入射质子在靶中能量损失过大,不再认为是单能质子,这种靶叫作厚靶。如人牙等。厚靶的X射线谱比较复杂,标准制备和数据处理比较困难。 制靶过程中注意不使元素丢失,也不能引入杂质。防止污染特别重要。尽量选用塑料制品;化学试剂和实验用水纯度要高;衬底材料的纯度高,表面清洁;贮存器皿干净。还要避免工作面空气污染。实验操作人员应认真对待每一步骤。3实验条件的选择 (1)质子能量 质子能量增大时X射线的产额也增大,对提高灵敏度有利;同时本底也增加。因此要权衡利弊选择质子能量。实验中质子能量常控制在14MeV。 (2)吸收体的应用 在基体的轻元素含量过高时,低能谱区计数率过高而影响整个能谱的测量。这种情况下在样品与探测器之间加用吸收片能消除其干扰。当待测元素受到与其原子序数相近的元素干扰时,可利用X射线的特征吸收峰来消除。例如在全血分析中,用Ti或Cr吸收Fe的X射线,消除Fe的叠加峰和逃逸峰,可改善某些低含量元素的分析。所使用的特征吸收体的原子序数比待吸收元素的低23。(3)束流 PIXE分析中质子束要用散焦的,通过调整加速器的束流聚焦系统来实现;也可以在准直器前放一薄金属膜,当质子束透过时便可散焦。束斑面积要略大于衬底上样品面积,保持束斑内活度均匀,以利于定量计算并减小测量误差。束流活度应限制在一定范围内,其标准是:第一,靶不被束流击穿;第二,能谱仪的电子线路不能过载。 (4)探测器 Si(Li)半导体探测器有较高的探测效率和能量分辨本领,故最为常用。 4定量分析 (1)绝对测量法 实际工作中应用较少,叙述从略。 (2)相对测量法 相对测量法的基础是在确定的实验条件下,待测元素的量与该元素X射线峰计数成正比。标样法:在相同条件下,分别测量待测样品m和含已知量ms标准样品的放射性,测得的特征X射线峰计数分别为N和Ns,则试样中待测元素的量,可用下面的简单公式表示: 此法要求两个靶的制备和测量条件完全相同,有时较难做到,因此误差较大。改进的方法是在制靶时分别在试样靶和标准靶中加入相同量的某一元素(称内标元素),测得的X射线谱用的内标元素的特征X峰计数归一,这样可减少误差。单一内标准法样品溶解后加入已知量的某种元素,作为定量分析的标准,一起制成薄靶,这种方法称为单一内标准法(或内标法),加入的元素称作内标元素。薄靶中待测元素和内标元素在质子的轰击下,产生相应的特征X射线,各元素的特征X射线计数值与内标元素的比值,即为各元素对内标元素的相对灵敏度。相对灵敏度因子,可由实验事先确定。(97) 式中,为电离截面,A为元素的原子量,为对该元素的探测效率,t为靶对探测器之间物质的透射率,角标分别指示元素的不同。经统计分析后,建立一条相对灵敏度曲线。实验条件一旦确定,相对灵敏度曲线就固定下来,图9-2是以元素钇为内标元素的相对灵敏度曲线。图 9-2内标法实验相对灵敏度曲线(KuX射线)(EP=2 MeV,1 mm聚苯乙烯吸收体,内标元素钇) 内标元素的选择应考虑这样几个因素:一般样品中应不含此元素;有合适的高纯度盐;且溶于水或酸;与待测元素的原子序数不要太靠近;同待分析元素产生的X射线活度相当。最常用的内标元素是钇(Y)。 采用内标法对薄靶样品作定量分析,计算大为简化。从被测元素的计数N与内标元素的计数Ns之比,内标元素的量ms及相对灵敏度因子可求出被测元素的量。三、PIXE分析生物样品的优点(一)所分析的元素正好适合生物样品分析的要求 现公认的14种必需微量元素,有9种处于PIXE的最高灵敏度区中;11种主要元素中,可用PIXE法测K、Ca、P、S和Cl五种。在PIXE的X射线谱中还可见到Ti、Rb、Sr和Br等元素。所以PIXE法可同时分析生物体中20多种主要元素和微量元素。(二)灵敏度高PIXE法具有最低的元素探测极限。相对灵敏度一般为(0.011)10-6以上,绝对灵敏度达1012g以上。第三节 扫描质子微探针 质子探针(scanning proton microprobe SPM)是建立在PIXE(质子激发射线荧光分析)基础上的一种新的微区、微量、无损分析技术. 扫描质子微探针又称质子显微镜(proton picroscope)是20世纪70年代初发展起来的一种新技术。其原理是在PIXE的基础上,利用粒子加速器将质子能量加速到2 3 MeV,经过电磁聚焦得到微米级的高能质子束。用这种高能质子束激发微区内的待分析检测的物质,可使样品中部分原子的内壳电子被击出产生空穴,于是外层电子向空穴跃迁,同时发出该原子的特征射线.通过测定射线能量和强度,结合各种原子参数(如电离截面、荧光产额等),可以测出样品中元素的种类及含量,同时通过移动样品或用微束对样品表面进行光栅式扫描,还可得到选区的次级电子图像和各元素的空间分布图。将入射质子束收缩成细束,这样不仅可以用质子束流来分析样品中所含元素的成分而且可以测定样品中所含元素的空间分布,空间分辨率达到微米数量级。该方法结合PIXE法的高灵敏度和微探针的高分辨率扫描两者的优点,所以SPM是分析元素微观分布的有力工具之一。由于质子束在样品的散射较小,以入射束的减速所造成的射线背景较低,质子探针具有分辨率高(0.5 1 )和检测限低(1 ppm)的优点,精度可优于电子探针100倍,是目前测定微量元素含量及确定元素在空间分布的最佳方法之一。 SPM的实验装置主要是在PIXE的基础上增加了束流聚焦系统和扫描系统。束流聚焦系统通俗地讲就是束流收缩系统,束流聚焦系统采用四极磁透镜组成聚焦系统使束流宽度缩小,或利用准直孔来限制束流偏转,再配上自动控制的二维移动装置,便可有效地控制“束-靶”相对位移。目前SPM已可将质子束聚焦到直径0.5 m左右。普通扫描电子显微镜(scanning electric microscope,SEM)虽然也可应用于微观空间分布的测定,但只能对厚度0.l m的样品进行分析,否则将明显影响空间分辨率。而应用SPM时,对10m级的厚样品仍能保持良好的空间分辨率,并且它对元素探测的灵敏度比SEM高23个数量级。一些位于亚细胞结构和生物大分子中的微量元素,其浓度范围仅为10-910-12级,这是SEM的灵敏远远达不到的。SPM在微量元素微观分布领域具有明显的优势。 图9-3是汞中毒患者头发扫描图另外,应用SPM分析技术还可以获得人体内元素含量随时间变化信息。例如,人头发每月生长约10 mm。微量元素可在头发中沉积,且沉积量与同期人体内微量元素的浓度相一致。SPM轴向扫描分析发样,即可得出微量元素在头发中的分布情况,相应地推断出人体各个时间摄取微量元素的情况。从汞峰和图9-3汞中毒患者头发的轴向扫描图相邻的锌峰比较,新生长的头发几乎看不出汞元素,说明汞中毒是以前发生的,从汞峰位置到发根的距离还可计算出汞中毒的大致时间。目前已知,机体的很多生理、过程与微量元素的水平及其分布密切相关。用SPM技术可获得正常组织和病变组织的元素分布图以及微量元素的动态分布。因此,SPM不仅为研究生命现象本质提供了极有价值的资料,并且在疾病诊断上也有很大潜力。第四节 背散射分析技术及核反应分析方法一、背散射分析技术背散射分析技术(Rutherford backward scattering RBS)基于带电离子与被分析物质中原子的原子核弹性散射过程来实现的。背散射过程从物理本质上讲就是Rutherford大角度散射过程。入射离子的质量为M1,电荷为Z1,能量为E0,散射后出射离子的能量为E1,弹性散射过程中入射离子和出射离子的质量、电荷是不改变的;待分析物质中原子的原子核的质量为M 2,电荷为Z2,能量为E2,散射角为则由弹性散射过程中能量守恒、动量守恒可以得到, 散射后出射离子的能量为E1=E0K()。其中(9.8)待分析物质中原子的原子核的质量M2越大,在碰撞过程中传递过来的动能越少,出射离子的动能也越大。通过测量分析背散射粒子(接近180o的大角度散射)的动能能谱,就可以反推得到样品中元素的含量和空间分布。由于RBS分析具有方法简便,结果定量、可靠,不必依赖于标样,不破坏样品宏观结构,能给出深度分布信息等优点,RBS的应用面极为广泛,是许多学科领域研究中样品表面层元素分析的重要手段,有的甚至成为某些工业生产(例如微电子工业)中产品检测的常规手段。RBS的主要应用有:在薄膜物理中,测定膜厚度、组分比、界面原子分布和原子混合,深度分辨率为4050 nm左右。当采用掠角散射几何条件(即入射束与样品平面夹角为15以下)时,可提高深度分辨率至10 nm以下。除了研究非生命体系问题外,RBS也可以用于生物活体的元素分析,研究生物体系时需要将带电粒子通过铍窗引出到靶室外进行测量。这种外束测量方法是可行的。RBS 对束斑的要求并不高,常规RBS的分析束斑在1 mm2左右。 二、核反应分析方法核反应分析方法(nuclear reaction analysin NRA)是一种利用离子束与待分析样品中的原子核发生核反应过程,通过测量核反应过程中释放出来的离子来分析样品中的元素的组成,空间分布的核分析方法。核反应分析有比活化分析更广泛的内容,活化分析仅仅是核反应分析所包含的一部分。根据原子核反应机制特点,引起靶核活化,使得靶核具有放射性仅仅是原子核反应过程中的一种。核反应分析方法是一种重要的表面分析技术,它以原子核反应为基础,可对固体中杂质(例如注入原子)的种类、含量及深度分布进行间接测量。根据离子注入的条件(能量、剂量等)及基体元素的性质,选用适当的入射粒子及其能量,使之仅与被测元素发生核反应探测核反应产生的带电粒子产额,便可得到出射粒子的能谱及入射粒子的激发曲线对能谱进行分析(着重于注入元素浓度峰的分析),便可确定注入的离子种类及其深度分布基于其原理,核反应分析法适合于测定轻原子在重元素基体中的含量及浓度分布。它具有测量速度快、定量、非破坏性、分忻灵敏度高及测量精度高等优点。用加速器产生的、等离子束与原子核发生特定反应,测量反应产物可确定靶核的性质与数量.目前已经实现了可以对C、O、Fe、N、Al、Ba、F、B、Mg等元素进行含量分析且具有较高的灵敏度。如利用加速器加速的氘束,采用14(,p)15反应,通过测量质子,快速无损伤地测量生物样品中的氮含量。生物体系内都含有大量的氢元素,在串列静电加速器上,采用氟离子源,产生入射离子19F,根据孤立共振核反应的Breit-Wigner关系,改变加速电压而改变入射离子能量E,将在样品的一定深度处发生共振核反应,反应方程如下式: (9.9)通过核反应 可以实现生物体内氢元素的含量和空间分布的测定。核反应分析在非生命体系的研究工作中有许多进展,对生命体系,这方面的工作正在开展。利用核反应过程不仅可进行分析方面的工作,而且可以开展医学成像和治疗方面的工作。 第五节 可活化示踪技术 可活化示踪技术(activated tracer technique,ATT)是把稳定核素示踪技术和活化分析法两者给合起来的一种新技术。基本步骤是在待研究体系中(血、尿和组织样品等)引入具有一定丰度的稳定核素示踪剂,进行活化分析,对该示踪剂作定性和定量分析。如18O的测定可利用18O(p,n)18F反应,通过测量18F的0.511 MeV湮没辐射(annihilation radiation),就可得到样品中18O的含量。可活化示踪剂还能与它的放射性同位素一起使用,用于双标记技术。例如,可活化示踪剂50Cr和放射性同位素51Cr共同标记红细胞,以观察红细胞的生存情况。 在医学或生物学研究中应用ATT时,对稳定性示踪剂有一定要求:第一,用作示踪剂的稳定核素最好是待研究体系中原有某种元素的稳定同位素。天然丰度要低,最好10,引入的示踪济基本上不改变生物体系的自然生理过程,同时又要能保证活化分析的结果可靠。因此要求用作示踪剂的稳定核素丰度最好高于其天然丰度10倍以上。第二,要求活化后生成的放射性核素在衰变过程中放出的射线易于测量。第三,要求活化后生成的放射性核素有适宜的半衰期,对生命体系的损伤不太大,或衰变产物代谢比较快。 可活化示踪技术综合了稳定核素示踪和活化分析技术两者的优点,它有较高的灵敏度。如应用高分辨探测器,可在活化后不经分离,使实验步骤大大简化,应用本技术能够进行重复性实验,提高精确度,还可克服放射性示踪剂引起的辐射损伤及环境污染。第六节 活化分析和PIXE法在医学中的应用一、研究微量元素在人体内的作用 研究生物体内各种元素的含量及其代谢规律已成为现代生物医学的重要课题,尤其是微量元素对人体健康的重要性越来越被重视。微量元素与疾病发生的关系方面尚存在许多问题。活化分析和 PIXE法是对微量元素进行定性、定量分析的最有效的手段。经过多年的努力,人们应用活化分析和PIXE法等技术研究微量元素已取得了大量成果。 临床上的标本大多是血、尿、头发及组织样品。血、尿是反映的是人体短时间内的情况。头发的结构均匀,化学性质稳定,代谢缓慢,某一原子一旦与头发结合就被固定下来。所以头发能够记录某一时期人体内微量元素的变化。另外,头发取材方便、制样简单,是活化分析和PIXE法使用最多的生物材料。头发中微量元素的组成和代谢变化,可作为人体新陈代谢的指标,提供环境污染影响人体健康的信息。研究微量元素在人体中的作用,首先需要了解正常体内元素(包括微量元素)的构成。国际放射防护委员会(ICRP)曾发表过标准人中各元素组成的参考值表9-3。表9-3 标准人的化学元素组成元素体内量(g)质量(%)元素体内量(g)质量(%)O4300061Pb0.121.710-4C1600023Cu7.210-21.010-4H700010Al6.110-29.010-5N18002.6Cd5.010-27.010-5Ca10001.4B4.810-27.010-5P7201.0Ba2.210-23.010-5S1400.2Sn1.710-22.010-5K1400.2Mn1.210-21.010-5Na1000.14Ni1.010-21.010-5Cl950.12Au1.010-21.010-5Mg192.710-2Mo9.310-31.010-5Si182.610-2Cr6.610-39.010-6Fe4.26.710-3Cs1.510-32.010-6F2.63.710-3Co1.510-32.010-6Zn2.33.510-3U7.010-41.010-6Rb0.324.610-4Be3.610-55.110-6Sr0.324.610-4Ra3.110-124.410-6Br0.202.810-4 研究微量元素在蛋白质、核酸、酶、激素和维生素中的作用机制是微量元素研究的重要方面。某些生物大分子中仅含有数个微量元素分子,但它们常位于生物大分子的活性中心,对分子化学活性和生物功能的有效表达起着至关重要的作用。例如血红蛋白分子中的四个铁原子位于活性中心,维持活性中心空间结构,在输送氧的过程中起重要作用。用PIXE法可测出血红蛋白中铁原子的量是否正常,而用其他方法测定则较困难。用PIXE法还可测定DNA分子所含的Cr、Ti、Fe、Co等元素以及其它酶中的微量元素。研究元素之间的相互比例关系对阐明某些生理和病理现象同样有很大价值。微量元素之间能够相互影响,如镉和铅能置换酶中的锌,使酶失活;硒能拮抗汞的毒性,而钴又能增强硒的毒性。病理情况下它们的正常比例会发生明显改变。具有多元素同时分析的活化分析和PIXE法在该领域的研究显示出其特殊的价值。二、研究微量元素和疾病的关系现在已知,肿瘤、心血管疾病、肝硬化和某些地方病的发生都和微量元素有关。目前的研究工作主要集中于探索微量元素的组成、水平、功能等变化与疾病发生的关系。有人用中子活化分析测定急性心肌梗塞病人的血浆,发现血浆中锌、硒的水平显著低于正常人,认为缺硒可能是引起心肌梗死的危险因素之一。在肿瘤方面,活化分析的研究也获得了一些有价值的资料。研究发现很多微量元素如砷、铬、铁、铜、铷、钠、锌等,在瘤性与非瘤性组织中有显著性差异。国内外许多实验室都报道,肾脏、结肠、肝脏和肺肿瘤组织中ZnCu比值均小于正常组织。张勇平等人报道,癌组织中钾元素的含量明显较正常组织高(表9-4)(引自 核技术,第17卷(1994)59)表9-4癌和正常组织细胞中钾元素的PIXE测定Normal(g/g)cancer(g/g)gastric10973313029612colonic15344152939962Cell line75269614154研究微量元素在细胞和亚细胞组份乃至生物大分子中的分布对生命科学中研究微量元素的生化功能有重要意义。经过许多人的努力,用中子活化分析测定了人体肝脏细胞中的细胞核、线粒体、溶酶体、微粒体和胞液中的20多种微量元素,发现Zn、Mn、Se主要分布在细胞核和线粒体中、Fe则分布在微粒体中、而Cu主要集中在线粒体中,它们与有关酶的存在和分布密切有关在对脑肿瘤组织细胞的细胞核、线粒体、髓磷脂和突触体的研究中发现:肿瘤细胞核中的Ca为正常细胞核的7倍;肿瘤细胞的细胞核和线粒体中Mn等多种微量元素含量升高,而在髓磷脂和突触体则呈降低。微量元素缺乏症、微量元素中毒症以及由此引起的地方病,发病率在某些地区仍很高。如克山病和大骨节病等。经活化分析和PIXE法测定发现,患者头发样品中S、Se、Cu、Pb等元素水平降低,而Fe、Mn水平升高,其变化规律与当地粮食和水中的元素分布规律相同。这一结果为地球生物化学病因学说提供了实验依据。随着资料的积累,对微量元素与疾病的关系有了进一步的了解。如锌元素与几十种酶的合成及活力有关,锌还参与蛋白质和核酸合成、能量代谢、激素作用及维生素A转化等重要环节。锌缺乏可引起青少年生长发育和免疫功能下降。硒摄入量不足时,谷胱甘肽过氧化物酶等含硒类酶活力降低,体内的脂质过氧化物积存,生物膜上的脂质因氧化作用而受到损伤。因为微量元素只有达到一定水平才能发挥生物效应,所以定量分析是关键步骤。分析灵敏度达到10-8或10-9级的活化分析和PIXE技术,是对微量元素作出定量分析研究的最有效的工具。三、在疾病诊断中的应用(一)体外样品分析 可进行活化分析或PIXE法测定的样品包括血、尿、头发、指甲或组织样品等。因样品量小,检测灵敏度高,可同时测定多种元素,在临床检验工作中有很大的实用

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论