论文摘要.doc

1794_切管机设计

收藏

压缩包内文档预览:
预览图 预览图
编号:79712287    类型:共享资源    大小:2.72MB    格式:RAR    上传时间:2020-05-18 上传人:加Q294****549海量... IP属地:湖南
39
积分
关 键 词:
1794 切管机 设计
资源描述:
1794_切管机设计,1794,切管机,设计
内容简介:
南昌航空大学科技学院南昌航空大学科技学院毕业设计(论文)任务书I、毕业设计(论文)题目: 切管机设计II、毕 业设计(论文)使用的原始资料(数据)及设计技术要求:设计一切管机,已知该切管机滚子的转速为r/min,圆盘刀片的直径径,加工管件的直径范围为,电机的额定功率,满载转速,每天工作10小时,载荷变动小。III、毕 业设计(论文)工作内容及完成时间:1. 收集资料、外文资料翻译,开题报告 第1周第2周 2. 传动方案的确定 第3周第4周 3. 参数确定及设计计算 第5周第7周 4. 切管机装配图设计及零部件图设计 第8周第15周 5. 撰写毕业设计论文 第16周第17周 、主 要参考资料:1 璞良贵,纪名刚主编.机械设计.第七版.北京:高等教育出版社,20012 孙桓,陈作模主编.机械原理.第六版.北京:高等教育出版社,20023 成大先主编.机械设计手册.北京:化学工业出版社,20044 赵学田主编.机械设计自学入门.北京:冶金工业出版社,19825 Ye Zhonghe, Lan Zhaohui. Mechanisms and Machine Theory. Higher Education Press, 2001.7 航空与机械工程 系 机械设计制造及其自动化 专业类 088105407 班学生:填写日期: 2012 年 02 月 21 日指导教师:助理指导教师(并指出所负责的部分):机械设计制造及其自动化 系主任(签名):南昌航空大学科技学院学士学位论文 毕业设计(论文)题 目: 切管机设计系 别 航空工程系 专业名称 机械设计制造及其自动化班级学号 088105407学生姓名 邓志华指导教师 吴晖二O一二 年 五 月 目 录引 言11. 确定工艺方案22. 传动装置的设计与计算42.1 电动机的选择42.1.1 类型的选择42.1.2 转速的选择42.1.3 功率的选择42.2 拟订传动方案52.3 计算各轴的转速、功率和转矩82.4 进行传动机构的设计与计算92.4.1 带传动设计102.4.3 蜗轮蜗杆模数的确定112.4.4 齿数的确定122.5 进行总体结构设计,画出总体方案图133. 结构设计153.1 初算各轴的最小直径153.2 计算各主要传动件的结构尺寸163.3 绘制部件的装配草图203.4 绘制设计装配图253.5 绘制零件工作图284. 结论305. 致谢316.参考文献3233 引 言 中国是一个上下有五千年历史的文明古国,从原始的石器时代到金属时代,我们伟大的祖先就进行了简单的机械加工,但是在当时的生产条件下,其生产的效率和精度都是非常的低下。随着时代的发展,人们在想方设法改善自己的生存条件和生活水平,正是由于这点,促进了机械制造生产的飞速发展,人们在超着一个精度更高、效率更高、成本更低、更加人性化的方向发展。中国虽然是一个文明古国,其拥有几千年的历史背景和文化积淀,但是其在工业制造方面和发达国家还是存在较大的差异,其机械制造技术却远远比不上西方等发达国家,众所周知,机械制造技术的先进与否直接与加工的精度,生产的效率,以及生产的成本产生直接关系。随着机械化生产的速度发展,人们对机械产品的要求也越来越高,其主要表现在实用和经济等方面。本次设计的目的和要求就是设计一个简单实有的切管机,其目的在于能够高效而廉价的加工出生产所需要的产品,并且要求其生产效率较高,适合大多数不是批量加工管件或者对管件加工要求不高的工厂使用。 在当今这个各项技术飞速发展的时代,尤其的随着计算机技术的高速发展,机械制造行业也得到了飞速的发展,其主要表现在数控加工等方面,生产效率也随着其得到了飞速的发展。数控技术加工的精度高,得到了无数人的喜爱,但是对于一些小型的工厂和对管件加工并不频繁的企业来说,应用数控等方法来加工这些管件就有点大材小用,而且严重浪费了资源。为此,在本次设计中,特根据工厂生产加工的实际情况,对现有的切管技术进行改进。使本次设计的切管机具备了操作简单、生产成本低、维护简单、生产效率高等优点。 本次设计的切管机主要是针对各种用途金属管材进行加工。本次设计的任务主要是对切管机中减速箱及有关零件进行的设计。其中包括传动装置的设计和计算。总体结构的设计以及对设计计算进行校核。并且通过得到的数据,绘制总体装配图,减速机装配图,减速箱焊接图等。然后又针对各主要基本件,绘制了多张零件图 本次设计的切管机为减轻工人的劳动强度,提高生产效率有着积极的意义。1. 确定工艺方案此次的设计任务为设计一简单高效的切管机,为此,对如下几种设计方案进行比较:方案一:用锯弓锯断金属管:需要锯弓往复的切削运动和滑枕摆动的进给与让刀运动。机器的结构比较复杂,锯切运动也不是连续的。当金属直径相差较大时,锯片还要调换,生产效率低。方案二:用切断刀切断金属管:如在车床上切断,但是一般车床主轴不过几十毫米,通不过直径较大的金属管,并且占有一台普通机床,不太经济。或者用专用的切管机,其工作原理是工件夹紧不动,装在旋转刀架上的两把切断刀,既有主切削的旋转运动,又有进给运动,工作效率高,但是机床结构比较复杂。方案三:用砂轮切断金属管:需要砂轮旋转的切削运动和摇臂向下的进给运动。此机构的结构简单,生产效率高,但是砂轮磨损较快费用很高。方案四:用碾压的方法切断金属管:其需要金属管旋转的切削运动和圆盘向下的进给运动。这种方法是连续切削的,生产效率高,机器的结构也不太复杂。但是会使管子的切口内径缩小,一般用于管子要求不高的场合。本次设计的要求为滚子转速n=70r/min,圆盘刀片直径a=80mm,加工管件的直径为3/84,电机额定功率i为P=1.5Kw满载转速为N=1410r/min,每天工作10小时,载荷变动小。根据毕设要求和结合生产实际。在本次设计中选用方案四。工艺方案确定后,并根据有关数据,加上其它一些必要的尺寸,得出工艺方案的原理图如图1-1图图1-1工艺方案原理图方案四管机的工作原理:动力由电动机带轮蜗杆蜗轮直齿轮中间惰轮滚子轴上小齿轮。由于滚子的旋转运动,从而带动工件的旋转,实现切削时的主运动。与此同时,操作手轮,通过螺旋传动,将圆盘刀片向下进给移动,并在不断增加刀片对管子的压力过程中,实现管子的切割工作。2 传动装置的设计与计算2.1 电动机的选择要选择电动机,必须了解电动机,出厂的每台电动机都有铭牌,上面标有电动机的主要技术参数。因此,要合理地选择电动机,就要比较电动机的这些特性。在进行简单机械设计时,应选择好电动机的类型,转速和功率。2.1.1 类型的选择工业上一般用三相交流电源,所以选用三相交流异步电动机。三相交流异步电机具有结构简单,工作可靠,价格便宜,维护方便等优点,所以应用广泛。在选择电动机的类型时,主要考虑的是:静载荷或惯性载荷的大小,工作机械长期连续工作还是重复短时工作,工作环境是否多灰尘或水土飞溅等方面。在本次设计中由于其载荷变动较小,有灰尘故选择笼式三相交流异步电机。2.1.2 转速的选择 异步电机的转速主要有3000r/min、1500r/min、1000r/min、750r/min几种。当工作机械的转速较高时,选用同步转速为3000r/min的电机比较合适。如果工作机械的转速太低(即传动装置的总传动比太大)将导致传动装置的结构复杂,价格较高。在本次设计中可选的转速有1500r/min和750r/min。在一般机械中这两种转速的电机适应性大,应用比较普遍。2.1.3 功率的选择选择电动机的容量就是合理确定电动机的额定功率,电动机功率的选择与电动机本身发热、载荷大小、工作时间长短有关,但一般情况下电动机容量主要由运行发热条件决定。故根据电动机的额定功率大于所需功率10%来选择电动机。综上所述,本次设计的切管机电机额定功率为P=1.5Kw满载转速为N=1410r/min,每天工作10小时,载荷变动小用于多尘场合。选用Y90L-4型电动机,其额定功率P电=1.5Kw,满载转速n电=1400r/min,同步转速1500r/min(4极),最大转矩为2.3Nm。电动机确定后,计算出切管机的传动比为:i总=20 (2-1)2.2 拟订传动方案传动方案的拟定,通常是指传动机构的选择及其布置。这是彼此相联系的两个方面。其运动形式大致分为;(1)传递回转运动的有:带传动,链传动,齿轮传动,蜗轮传动等;(2)实现往复直线运动或摆动的有:螺旋传动,齿轮齿条传动,凸轮机构,曲柄滑块机构等;(3)实现间歇运动的有棘轮机构和槽轮机构等;(4)实现特定运动规律的有凸轮机构和平面连杆机构等。 传动机构的选择就是根据机器工作机构所要求的运动规律,载荷的性质以及机器的工作循环进行的。然后在全面分析和比较各种传动机构特性的基础上确定一种较好的传动方案。机器通常由原动机、传动装置和工作机等三部分组成。传动装置位于原动机和工作机之间,用来传递运动和动力,并可以改变转速、转矩的大小或改变运动形式,以适应工作机功能要求。传动装置的设计对整台车的性能、尺寸、重量和成本都有很大影响,因此需要合理的拟定传动方案。在本次毕业设计中,已知切管机的i总=20,若用蜗杆,一次降速原本可以达到,其方案如图2-1。但是由于切割的管子最大直径为4,如图1-1故两个滚筒的中心距不能小于108mm,因此带动两个滚筒的齿轮外径不能大于滚筒的直径(100mm)。若取蜗杆z1=2,蜗轮z2=40,m=4,则蜗轮分度圆直径d2=160mm,比同一轴上的齿轮大,按图2-2-1的布置,蜗轮将要和滚筒相撞,为此,应该加大两轴之间的中心距。这样就要加上一个惰轮,才可以解决这个问题,如图2-2-2。在本次设计中,取蜗轮齿数为z2=50,模数m=4。由于带传动具有缓冲和过载打滑的特性,故可将最为在电机之后的第一级传动,此外开式齿轮传动不宜放在高速级,因为在这种条件下工作容易产生冲击和噪音,故应将齿轮传动放在底速级。一个好的传动方案,除了首先应满足机器的功能要求外,还应当工作可靠、结构简单、尺寸紧凑、成本低廉以及使用维护方便。经比较各种传动方案,在本次设计中确定采用带传动、蜗杆传动、齿轮传动等机构组成的传动方案。并初步画出其传动系统图,如图2-2-3。图2-2-1蜗轮蜗杆传动方案图2-2-2蜗轮蜗杆加中间惰轮传动方案图在传动方案确定后,根据i总=i1i2的关系分配传动比.下面对个机构的主要特性进行比较,如表2-2-1:图2-2-3带传动、蜗轮蜗杆、中间惰轮、齿轮方案图表2-2-1几种主要传动机构的特性比较特 性类 型带传动齿轮传动蜗杆传动主要优点中心距变化范围较大,结构简单,传动平稳,能缓冲,起过载安全保护作用外廓尺寸小,传动比准确,效率高,寿命长,适用的功率和速度范围大外廓尺寸小,传动比大而准确,工作平稳,可制成自锁的传动单级传动比,i开口平型带:24,最大值6,三角带型: 24, 最大值7有张紧轮平型带:35最大值8开式圆柱齿轮: 46,最大值15. 开式圆柱正齿轮: 34,最大值10. 闭式圆柱齿轮: 23,最大值6闭式: 1040,最大值100开式: 1560,最大值100外廓尺寸大中,小小成本低中高效率平型带0.920.98三角带0.90.96开式加工齿0.920.96闭式0.950.99开式0.50.7闭式0.70.94自锁0.400.45考虑到传动装置的结构,尺寸,重量,工作条件和制造安装等因素,必须对传动比进行合理的分配.根据公式T=9550(Nm)可知:当传动的功率P(Kw)一定时,转速n(r/min)越高,转矩T就越小.为此,在进行传动比的分配时遵循”降速要先少后多”.V带传动的传动比不能过大,否则会使大带轮半径超过减速器的中心高,造成尺寸不协调,并给机座设计和安装带来困难,又因为齿轮在降速传动中,如果降速比较大,就会使被动齿轮直径过大,而增加径向尺寸,或者因小齿轮的齿数太少而产生根切现象.而其在升速传动中,如果升速比过大,则容易引起强烈的震动和噪音,造成传动不平稳,影响机器的工作性能.为此,各机构的传动比分配情况如下:i1=1.2;i2=50;i3=1.5;i4= (2-2) i总= i1i2 i3i4=1.2501.5=20 (2-3)注:传动系统只大齿轮是个惰轮,它不改变传动比只起加大中心距,改变滚筒旋转方向的作用.2.3 计算各轴的转速、功率和转矩由表一我们可知,取带=0.96,蜗=0.72,齿=0.94,滚=0.99(一对滚动轴承的效率),根据公式: , (2-5)可知各轴的转速为: (2-6) (2-7) (2-8) (2-9) 各轴的功率为: (2-10) (2-11) (2-12) (2-13)各轴传递的转矩为: (Nm) (2-14) (Nm) (2-15) (2-16)第三轴,因为装的是过渡齿轮(惰轮),所以此轴不承受转矩,只受弯矩,它是一根心轴。 (2-17)将以上各数据制成如表2-3-1所示的表格。表2-3-1各轴计算结果轴号电机轴传动比i1.2501.51/4.5转速n(r/min)1410116.723.315.570功率P(Kw)1.51.441.030.960.89转矩T(Nm)10.2311.78420.02122.3 在计算传动比的时候,当带轮直径和齿轮模数确定后,实际传动比就等于两带轮直径之比,或者两齿轮齿数之比,其结果可能出现与上表数据不一致。当i5时,容许误差不大于+ -2.5%;当i5时,则不容许大于+ -4%。2.4 进行传动机构的设计与计算2.4.1 带传动设计带传动适用的场合:中心距变化范围较大,结构简单,传动平稳,能缓冲,可起过载安全保险的作用。缺点是外廓尺寸大,轴上受力较大,传动比不能严格保证,寿命低(约30005000小时)在本次设计中,取带的工作情况系数K=1.1,则计算功率为:P计= KP电=1.11.5=1.65(Kw) (2-18)由P计和n1=1400r/min,可查知,选用A型三角带。初步选定小带轮直径d1=100mm,大带轮直径d2=i1d1=1.2100=120mm,取其标准直径d2=125mm验算带轮: (2-19)小于25m/s,适合。初定中心距a0,按公式:0.7(d1+d2)a0160mm,可采用辐板式结构的锻造齿轮。轮缘内径d缘= d 顶2-10m=168-30=138mm轮毂外径d毂=1.6d轴2=1.645=72mm(d轴2齿轮的孔径,由表三可知d轴2=45mm)辐板厚度c=0.3B=0.330=9mm辐板孔圆周定位尺寸:d0=0.5(d缘+d毂) =0.5(138+72)=105mm (3-5)辐板孔直径:d孔=0.25(d缘- d毂)=0.25(138-72)=16.5mm,取d孔=17mm。齿轮示意图如图3-2-1 图3-2-1轴齿轮示意图2)已知轴上齿轮z3=81,m=3,则:分度圆直径d3=mz3=381=243mm齿顶圆直径d顶3=m(z3+2)=3(81+2)=249mm齿根圆直径d根3=m(z3-2.5)=3(81-2.5)=235.5mm齿宽B=30mm。由于d根3160mm,可采用辐板式结构的锻造齿轮。轮缘内径d缘= d顶3-10m=249-30=219mm轮毂外径d毂=1.6d轴3=1.650=80mm(d轴3齿轮的孔径,由表三可知d轴3=50mm)辐板厚度c=0.3B=0.330=9mm辐板孔圆周定位尺寸:d0=0.5(d缘+d毂) =0.5(219+80)=149.5mm (3-6)辐板孔直径:d孔=0.25(d缘- d毂)=0.25(219-80)=34.75mm,取d孔=35mm。、轴的中心距: (3-7)轴上齿轮如图3-2-2图3-2-2轴齿轮示意图3)已知轴上的齿轮z4=18,m=3则:分度圆直径d4=mz4=318=54mm齿顶圆直径d顶4=m(z4+2)=3(18+2)=60mm齿根圆直径d根4=m(z4-2.5)=3(18-2.5)=46.5mm齿宽B=30mm。由于d根3 d1+2r r倒圆直径,查阅手册中非配合处的过度圆角半径用凸肩定位时按此式计算,用套筒定位时另取带轮的定位靠套筒,此处的d2是指套筒外径d3安装滚动轴承处的直径dd3 d2dd3 d1无套筒的;套筒的d3必须符合轴承的标准由于采用205型轴承,d3=25mmd4装在两滚动轴承之间齿轮(蜗轮)处的直径dd4 d3+2rr倒圆角半径,查阅手册确定如如轴d5一般轴肩和轴环的直径dd5d4+2a a轴肩或轴环的高度,a=(0.070.1) d4如如轴,d4=55mm,a=3.855.5mm,取a=5mm,则d5=55+2*5=65mm因此处d4相当于d3=25,a=0.1 d4则d5=25+2*2.5=30mmd6滚动轴承定位轴肩直径查阅手册轴承部分的D1值L7安装旋转零件的轴头长度LL7=(1.21.6)ddd-轴头直径一般要求L7要比旋转零件的轮毂宽度要短一些L8轴环长度L81.4a或L8(0.10.15)d如轴L81.4*5=7mm减速箱焊接图如图3-4-3图3-4-3减速箱焊接图3.5 绘制零件工作图 机械零件有两种:一类需要自行设计制作的,叫基本件;基本件必须根据设计装配图,全部拆画,并对细部结构进行设计。在本次设计中选取其中我滚筒工作图和蜗杆工作图作为零件图拆画: 滚筒零件图如图3-5-1图3-5-1滚筒零件图 蜗杆零件图如图3-5-2图3-5-2蜗杆零件图4. 结论通过对相关资料的查阅和对切管机的设计计算,并且对切管机进行了初步的设计。在设计过程中,主要的工作有如下几点:对传动方案的选择和对机构的设计计算,其中包括选择合适的传动方案和对减速箱部分各个零件的设计计算以及校核。设计计算结束后,在已有数据的基础之上,画出了总体装配图的轮廓,通过对各个参数的进一步确定,最后终于得到了总体装配图。对几个主要的零部件进行了绘制,其中包括滚子零件的工作图,蜗杆的零件图等。从这一设计题目的综合运用中,更是把所学的这些知识有了一个大的融会与应用,从而所学的知识也不再是死的,有了一个比较全面的复习。在设计与计算的过程中,也遇到了许多的困难与问题。通过查找资料,将这些问题解决的这种独立的解决问题和思考的方法,是在这次设计中我得到的一个最大的收获。当然,从中也大致了解了一些产品设计的基本方法,这也将是一次宝贵的实践经验。相信在以后的工作中,将会有很大帮助。5. 致谢在此,最要感谢的是指导我这次毕业设计的老师。他不厌其烦的指导和帮助,以严谨而认真的指导态度,正直的人品给我留下了深刻的印象。最后,再次向在我的这次毕业设计中帮助、指导我的各位老师与同学,表达最真诚的谢意,谢谢您,我的导师!是你让我知道什么叫做“有志者,事竟成”这句话的真谛,教我利用科学的方法计算出我们所需的每一组数据,想做没什么做不到的,在此,祝:我的导师身体健康,合家欢乐,事事顺利!谢谢!6.参考文献1 璞良贵,纪名刚主编.机械设计.第七版.北京:高等教育出版社,20012 孙桓,陈作模主编.机械原理.第六版.北京:高等教育出版社,20023 成大先主编.机械设计手册.北京:化学工业出版社,20044 赵学田主编.机械设计自学入门.北京:冶金工业出版社,19825 纪名刚编.机械设计.高等教育出版社,20016 廖念钊等.互换性与技术测量.北京:中国计量出版社,20017 濮良贵等.机械设计.北京:高等教育出版社,20018 刘鸿文.材料力学.北京:高等教育出版社,20049 吴宗泽.机械设计使用手册.北京:化学工业出版社,200010 王昆等.机械设计、机械设计基础课程设计.北京:高等教育出版社,200511 陈宏钧.实用金属切削手册.北京:机械工业出版社,200512 于惠力等.机械零部件设计禁忌.北京:机械工业出版社,200613 艾云龙等.工程材料及成型技术.南昌:南昌航空工业学院出版社,200414 阮忠唐.联轴器、离合器设计与选用指南.北京:化学工业出版社,200515 周四新.Pro/ENGINEER Wildfire 综合培训教程.北京:机械工业出版社,200416 刘庆国等.计算机绘图.北京:高等教育出版社,200417 菜春源.新编机械设计手册.沈阳:辽宁科学技术出版社,199318 Ye Zhonghe, Lan Zhaohui. Mechanisms and Machine Theory. Higher Education Press, 2001.7南昌航空大学科技学院毕业设计外文翻译毕业设计(论文)外文翻译题目 切管机设计专 业 名 称 机械设计制造及其自动化班 级 学 号 088105407学 生 姓 名 邓志华指 导 教 师 吴晖填 表 日 期 2012 年 3月 6 日关于可机加工性的论述摘要:文章集中阐述了机加工的一些列概念和种类及方法。从实例的角度向读者解释了一些列机加工所需要的过程及定义,也简单介绍了各种机加工的材料。关键词:机加工、材料、概念.20.9 可机加工性一种材料的可机加工性通常以四种因素的方式定义:1、 分的表面光洁性和表面完整性。2、刀具的寿命。3、切削力和功率的需求。4、切屑控制。以这种方式,好的可机加工性指的是好的表面光洁性和完整性,长的刀具寿命,低的切削力和功率需求。关于切屑控制,细长的卷曲切屑,如果没有被切割成小片,以在切屑区变的混乱,缠在一起的方式能够严重的介入剪切工序。因为剪切工序的复杂属性,所以很难建立定量地释义材料的可机加工性的关系。在制造厂里,刀具寿命和表面粗糙度通常被认为是可机加工性中最重要的因素。尽管已不再大量的被使用,近乎准确的机加工率在以下的例子中能够被看到。20.9.1 钢的可机加工性因为钢是最重要的工程材料之一(正如第5章所示),所以他们的可机加工性已经被广泛地研究过。通过宗教铅和硫磺,钢的可机加工性已经大大地提高了。从而得到了所谓的易切削钢。二次硫化钢和二次磷化钢 硫在钢中形成硫化锰夹杂物(第二相粒子),这些夹杂物在第一剪切区引起应力。其结果是使切屑容易断开而变小,从而改善了可加工性。这些夹杂物的大小、形状、分布和集中程度显著的影响可加工性。化学元素如碲和硒,其化学性质与硫类似,在二次硫化钢中起夹杂物改性作用。钢中的磷有两个主要的影响。它加强铁素体,增加硬度。越硬的钢,形成更好的切屑形成和表面光洁性。需要注意的是软钢不适合用于有积屑瘤形成和很差的表面光洁性的机器。第二个影响是增加的硬度引起短切屑而不是不断的细长的切屑的形成,因此提高可加工性。含铅的钢 钢中高含量的铅在硫化锰夹杂物尖端析出。在非二次硫化钢中,铅呈细小而分散的颗粒。铅在铁、铜、铝和它们的合金中是不能溶解的。因为它的低抗剪强度。因此,铅充当固体润滑剂并且在切削时,被涂在刀具和切屑的接口处。这一特性已经被在机加工铅钢时,在切屑的刀具面表面有高浓度的铅的存在所证实。当温度足够高时例如,在高的切削速度和进刀速度下铅在刀具前直接熔化,并且充当液体润滑剂。除了这个作用,铅降低第一剪切区中的剪应力,减小切削力和功率消耗。铅能用于各种钢号,例如10XX,11XX,12XX,41XX等等。铅钢被第二和第三数码中的字母L所识别(例如,10L45)。(需要注意的是在不锈钢中,字母L的相同用法指的是低碳,提高它们的耐蚀性的条件)。然而,因为铅是有名的毒素和污染物,因此在钢的使用中存在着严重的环境隐患(在钢产品中每年大约有4500吨的铅消耗)。结果,对于估算钢中含铅量的使用存在一个持续的趋势。铋和锡现正作为钢中的铅最可能的替代物而被人们所研究。脱氧钙钢 一个重要的发展是脱氧钙钢,在脱氧钙钢中矽酸钙盐中的氧化物片的形成。这些片状,依次减小第二剪切区中的力量,降低刀具和切屑接口处的摩擦和磨损。温度也相应地降低。结果,这些钢产生更小的月牙洼磨损,特别是在高切削速度时更是如此。不锈钢 奥氏体钢通常很难机加工。振动能成为一个问题,需要有高硬度的机床。然而,铁素体不锈钢有很好的可机加工性。马氏体钢易磨蚀,易于形成积屑瘤,并且要求刀具材料有高的热硬度和耐月牙洼磨损性。经沉淀硬化的不锈钢强度高、磨蚀性强,因此要求刀具材料硬而耐磨。钢中其它元素在可机加工性方面的影响 钢中铝和矽的存在总是有害的,因为这些元素结合氧会生成氧化铝和矽酸盐,而氧化铝和矽酸盐硬且具有磨蚀性。这些化合物增加刀具磨损,降低可机加工性。因此生产和使用净化钢非常必要。根据它们的构成,碳和锰钢在钢的可机加工性方面有不同的影响。低碳素钢(少于0.15%的碳)通过形成一个积屑瘤能生成很差的表面光洁性。尽管铸钢的可机加工性和锻钢的大致相同,但铸钢具有更大的磨蚀性。刀具和模具钢很难用于机加工,他们通常再煅烧后再机加工。大多数钢的可机加工性在冷加工后都有所提高,冷加工能使材料变硬并且减少积屑瘤的形成。其它合金元素,例如镍、铬、钳和钒,能提高钢的特性,减小可机加工性。硼的影响可以忽视。气态元素比如氢和氮在钢的特性方面能有特别的有害影响。氧已经被证明了在硫化锰夹杂物的纵横比方面有很强的影响。越高的含氧量,就产生越低的纵横比和越高的可机加工性。选择各种元素以改善可加工性,我们应该考虑到这些元素对已加工零件在使用中的性能和强度的不利影响。例如,当温度升高时,铝会使钢变脆(液体金属脆化,热脆化,见1.4.3节),尽管其在室温下对力学性能没有影响。因为硫化铁的构成,硫能严重的减少钢的热加工性,除非有足够的锰来防止这种结构的形成。在室温下,二次磷化钢的机械性能依赖于变形的硫化锰夹杂物的定位(各向异性)。二次磷化钢具有更小的延展性,被单独生成来提高机加工性。20.9.2 其它不同金属的机加工性尽管越软的品种易于生成积屑瘤,但铝通常很容易被机加工,导致了很差的表面光洁性。高的切削速度,高的前角和高的后角都被推荐了。有高含量的矽的锻铝合金铸铝合金也许具有磨蚀性,它们要求更硬的刀具材料。尺寸公差控制也许在机加工铝时会成为一个问题,因为它有膨胀的高导热系数和相对低的弹性模数。铍和铸铁相同。因为它更具磨蚀性和毒性,尽管它要求在可控人工环境下进行机加工。灰铸铁普遍地可加工,但也有磨蚀性。铸造无中的游离碳化物降低它们的可机加工性,引起刀具切屑或裂口。它需要具有强韧性的工具。具有坚硬的刀具材料的球墨铸铁和韧性铁是可加工的。钴基合金有磨蚀性且高度加工硬化的。它们要求尖的且具有耐蚀性的刀具材料并且有低的走刀和速度。尽管铸铜合金很容易机加工,但因为锻铜的积屑瘤形成因而锻铜很难机加工。黄铜很容易机加工,特别是有添加的铅更容易。青铜比黄铜更难机加工。镁很容易机加工,镁既有很好的表面光洁性和长久的刀具寿命。然而,因为高的氧化速度和火种的危险(这种元素易燃),因此我们应该特别小心使用它。钳易拉长且加工硬化,因此它生成很差的表面光洁性。尖的刀具是很必要的。镍基合金加工硬化,具有磨蚀性,且在高温下非常坚硬。它的可机加工性和不锈钢相同。钽非常的加工硬化,具有可延性且柔软。它生成很差的表面光洁性且刀具磨损非常大。钛和它的合金导热性(的确,是所有金属中最低的),因此引起明显的温度升高和积屑瘤。它们是难机加工的。钨易脆,坚硬,且具有磨蚀性,因此尽管它的性能在高温下能大大提高,但它的机加工性仍很低。锆有很好的机加工性。然而,因为有爆炸和火种的危险性,它要求有一个冷却性质好的切削液。20.9.3 各种材料的机加工性石墨具有磨蚀性。它要求硬的、尖的,具有耐蚀性的刀具。塑性塑料通常有低的导热性,低的弹性模数和低的软化温度。因此,机加工热塑性塑料要求有正前角的刀具(以此降低切削力),还要求有大的后角,小的切削和走刀深的,相对高的速度和工件的正确支承。刀具应该很尖。切削区的外部冷却也许很必要,以此来防止切屑变的有黏性且粘在刀具上。有了空气流,汽雾或水溶性油,通常就能实现冷却。在机加工时,残余应力也许能生成并发展。为了解除这些力,已机加工的部分要在()的温度范围内冷却一段时间,然而慢慢地无变化地冷却到室温。热固性塑料易脆,并且在切削时对热梯度很敏感。它的机加工性和热塑性塑料的相同。因为纤维的存在,加强塑料具有磨蚀性,且很难机加工。纤维的撕裂、拉出和边界分层是非常严重的问题。它们能导致构成要素的承载能力大大下降。而且,这些材料的机加工要求对加工残片仔细切除,以此来避免接触和吸进纤维。随着纳米陶瓷(见8.2.5节)的发展和适当的参数处理的选择,例如塑性切削(见22.4.2节),陶瓷器的可机加工性已大大地提高了。金属基复合材料和陶瓷基复合材料很能机加工,它们依赖于单独的成分的特性,比如说增强纤维或金属须和基体材料。20.9.4 热辅助加工在室温下很难机加工的金属和合金在高温下能更容易地机加工。在热辅助加工时(高温切削),热源一个火把,感应线圈,高能束流(例如雷射或电子束),或等离子弧被集中在切削刀具前的一块区域内。好处是:(a)低的切削力。(b)增加的刀具寿命。(c)便宜的切削刀具材料的使用。(d)更高的材料切除率。(e)减少振动。也许很难在工件内加热和保持一个不变的温度分布。而且,工件的最初微观结构也许被高温影响,且这种影响是相当有害的。尽管实验在进行中,以此来机加工陶瓷器如氮化矽,但高温切削仍大多数应用在高强度金属和高温度合金的车削中。小结通常,零件的可机加工性能是根据以下因素来定义的:表面粗糙度,刀具的寿命,切削力和功率的需求以及切屑的控制。材料的可机加工性能不仅取决于起内在特性和微观结构,而且也依赖于工艺参数的适当选择与控制。On the discussion of the machinabilityAbstract: The paper is about the concept of mamufacturing engineering and the ways of processing it.It explains the foundamental concept of manufacturing engineeing from the way of example and also offer us some konds of materials can be used in manifacturing engineering.Keywords: manufacturing engineering、mterial、concept20.9 MACHINABILITYThe machinability of a material usually defined in terms of four factors:1、 Surface finish and integrity of the machined part;2、 Tool life obtained;3、 Force and power requirements;4、 Chip control. Thus, good machinability good surface finish and integrity, long tool life, and low force And power requirements. As for chip control, long and thin (stringy) cured chips, if not broken up, can severely interfere with the cutting operation by becoming entangled in the cutting zone.Because of the complex nature of cutting operations, it is difficult to establish relationships that quantitatively define the machinability of a material. In manufacturing plants, tool life and surface roughness are generally considered to be the most important factors in machinability. Although not used much any more, approximate machinability ratings are available in the example below.20.9.1 Machinability Of SteelsBecause steels are among the most important engineering materials (as noted in Chapter 5), their machinability has been studied extensively. The machinability of steels has been mainly improved by adding lead and sulfur to obtain so-called free-machining steels.Resulfurized and Rephosphorized steels. Sulfur in steels forms manganese sulfide inclusions (second-phase particles), which act as stress raisers in the primary shear zone. As a result, the chips produced break up easily and are small; this improves machinability. The size, shape, distribution, and concentration of these inclusions significantly influence machinability. Elements such as tellurium and selenium, which are both chemically similar to sulfur, act as inclusion modifiers in resulfurized steels.Phosphorus in steels has two major effects. It strengthens the ferrite, causing increased hardness. Harder steels result in better chip formation and surface finish. Note that soft steels can be difficult to machine, with built-up edge formation and poor surface finish. The second effect is that increased hardness causes the formation of short chips instead of continuous stringy ones, thereby improving machinability.Leaded Steels. A high percentage of lead in steels solidifies at the tip of manganese sulfide inclusions. In non-resulfurized grades of steel, lead takes the form of dispersed fine particles. Lead is insoluble in iron, copper, and aluminum and their alloys. Because of its low shear strength, therefore, lead acts as a solid lubricant (Section 32.11) and is smeared over the tool-chip interface during cutting. This behavior has been verified by the presence of high concentrations of lead on the tool-side face of chips when machining leaded steels.When the temperature is sufficiently high-for instance, at high cutting speeds and feeds (Section 20.6)the lead melts directly in front of the tool, acting as a liquid lubricant. In addition to this effect, lead lowers the shear stress in the primary shear zone, reducing cutting forces and power consumption. Lead can be used in every grade of steel, such as 10xx, 11xx, 12xx, 41xx, etc. Leaded steels are identified by the letter L between the second and third numerals (for example, 10L45). (Note that in stainless steels, similar use of the letter L means “low carbon,” a condition that improves their corrosion resistance.)However, because lead is a well-known toxin and a pollutant, there are serious environmental concerns about its use in steels (estimated at 4500 tons of lead consumption every year in the production of steels). Consequently, there is a continuing trend toward eliminating the use of lead in steels (lead-free steels). Bismuth and tin are now being investigated as possible substitutes for lead in steels.Mental pipe cutting machine is the one mainly be used in the production of cars,industry and some work of putting materials.The work need to be finished is the design of body of the machine and the roll of it.It includes the design and calculate of the slowing speed box,.The choose of the electromotor,the design of the gearing,the rev,the measure design of the main deliver parts.Than do the emandation work.After all ,get the data and drawing the engineering picture.It includes one final assembling picture,two assembling pictures of each parts,some small pictures of the important accessary.The design work we do this time is to the purpose of be used at the place of fanning pipe and draining pipe.This product also can be used at the situation of enhancing the efficiency of production.Make the working effection upon and low down the labor force.Calcium-Deoxidized Steels. An important development is calcium-deoxidized steels, in which oxide flakes of calcium silicates (CaSo) are formed. These flakes, in turn, reduce the strength of the secondary shear zone, decreasing tool-chip interface and wear. Temperature is correspondingly reduced. Consequently, these steels produce less crater wear, especially at high cutting speeds.Stainless Steels. Austenitic (300 series) steels are generally difficult to machine. Chatter can be s problem, necessitating machine tools with high stiffness. However, ferritic stainless steels (also 300 series) have good machinability. Martensitic (400 series) steels are abrasive, tend to form a built-up edge, and require tool materials with high hot hardness and crater-wear resistance. Precipitation-hardening stainless steels are strong and abrasive, requiring hard and abrasion-resistant tool materials.The Effects of Other Elements in Steels on Machinability. The presence of aluminum and silicon in steels is always harmful because these elements combine with oxygen to form aluminum oxide and silicates, which are hard and abrasive. These compounds increase tool wear and reduce machinability. It is essential to produce and use clean steels.Carbon and manganese have various effects on the machinability of steels, depending on their composition. Plain low-carbon steels (less than 0.15% C) can produce poor surface finish by forming a built-up edge. Cast steels are more abrasive, although their machinability is similar to that of wrought steels. Tool and die steels are very difficult to machine and usually require annealing prior to machining. Most of steels is improved by cold working, which hardens the material and reduces the tendency for built-up edge formation.Other alloying elements, such as nickel, chromium, molybdenum, and vanadium, which improve the properties of steels, generally reduce machinability. The effect of boron is negligible. Gaseous elements such as hydrogen and nitrogen can have particularly detrimental effects on the properties of steel. Oxygen has been shown to have a strong effect on the aspect ratio of the manganese sulfide inclusions; the higher the oxygen content, the lower the aspect ratio and the higher the machinability.The mechanical seal is depends on a pair of relative motion link end surface A (fixed, another revolves together with axis) the mutual fitting forms the small axial play plays the seal role, this kind of equipment is called the mechanical seal. The mechanical seal usually by moves the link, the static link, contracts the part and the seal part is composed. Moves the link and the static link end surface composes a pair to rub, moves the link to depend on in the sealed chamber the liquid pressure to cause its shoulder up on the static link end surface, and produces on two links end surfaces suitable compared to presses and maintains an extremely thin liquid membrane to achieve the seal the goal. Contracts the part pressurize, may cause to pump under the operating condition, also maintains the end surface fitting, guaranteed the seal medium nothing more than leaks, and prevented the impurity enters seals the end surface. Seals the part to play the seal to move the link and axis gap B, the static link and the gland gap C role, simultaneously to the vibration which pumps, attacks the cushioning effect. The mechanical seal in the actual movement is not an isolated part, it is with other spare parts which pumps combines the movement together, simultaneously may see through its basic principle, the mechanical seal normal operation has the condition, for instance: Otherwise fleeing measures a pump spindles being not able to very big, friction subsidiary end face can not form the ratio pressure demanding regularly; The pump spindle that machinery hermetic sealing gets along can not have boundary very big deflection , end face waits a minute otherwise than pressure will be uneven. Besides only when satisfying similar such external condition, fine machinery seals off oneself function, ability reaches ideal hermetic sealing effect. In selecting various elements to improve machinability, we should consider the possible detrimental effects of these elements on the properties and strength of the machined part in service. At elevated temperatures, for example, lead causes embrittlement of steels (liquid-metal embrittlement, hot shortness; see Section 1.4.3), although at room temperature it has no effect on mechanical properties.Sulfur can severely reduce the hot workability of steels, because of the formation of iron sulfide, unless sufficient manganese is present to prevent such formation. At room temperature, the mechanical properties of resulfurized steels depend on the orientation of the deformed manganese sulfide inclusions (anisotropy). Rephosphorized steels are significantly less ductile, and are produced solely to improve machinability.20.9.2 Machinability of Various Other Metals Aluminum is generally very easy to machine, although the softer grades tend to form a built-up edge, resulting in poor surface finish. High cutting speeds, high rake angles, and high relief angles are recommended. Wrought aluminum alloys with high silicon content and cast aluminum alloys may be abrasive; they require harder tool materials. Dimensional tolerance control may be a problem in machining aluminum, since it has a high thermal coefficient of expansion and a relatively low elastic modulus.Beryllium is similar to cast irons. Because it is more abrasive and toxic, though, it requires machining in a controlled environment.Cast gray irons are generally machinable but are. Free carbides in castings reduce their machinability and cause tool chipping or fracture, necessitating tools with high toughness. Nodular and malleable irons are machinable with hard tool materials.Cobalt-based alloys are abrasive and highly work-hardening. They require sharp, abrasion-resistant tool materials and low feeds and speeds.Wrought copper can be difficult to machine because of built-up edge formation, although cast copper alloys are easy to machine. Brasses are easy to machine, especially with the addition pf lead (leaded free-machining brass). Bronzes are more difficult to machine than brass.Magnesium is very easy to machine, with good surface finish and prolonged tool life. However care should be exercised because of its high rate of oxidation and the danger of fire (the element is pyrophoric).Molybdenum is ductile and work-hardening, so it can produce poor surface finish. Sharp tools are necessary.Nickel-based alloys are work-hardening, abrasive, and strong at high temperatures. Their machinability is similar to that of stainless steels.Tantalum is very work-hardening, ductile, and soft. It produces a poor surface finish; tool wear is high.Titanium and its alloys have poor thermal conductivity (indeed, the lowest of all metals), causing significant temperature rise and built-up edge; they can be difficult to machine.Tungsten is brittle, strong, and very abrasive, so its machinability is low, although it greatly improves at elevated temperatures.Zirconium has good machinability. It requires a coolant-type cutting fluid, however, because of the explosion and fire.20.9.3 Machinability of Various MaterialsGraphite is abrasive; it requires hard, abrasion-resistant, sharp tools.Thermoplastics generally have low thermal conductivity, low elastic modulus, and low softening temperature. Consequently, machinin
温馨提示:
1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
2: 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
3.本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
提示  人人文库网所有资源均是用户自行上传分享,仅供网友学习交流,未经上传用户书面授权,请勿作他用。
关于本文
本文标题:1794_切管机设计
链接地址:https://www.renrendoc.com/p-79712287.html

官方联系方式

2:不支持迅雷下载,请使用浏览器下载   
3:不支持QQ浏览器下载,请用其他浏览器   
4:下载后的文档和图纸-无水印   
5:文档经过压缩,下载后原文更清晰   
关于我们 - 网站声明 - 网站地图 - 资源地图 - 友情链接 - 网站客服 - 联系我们

网站客服QQ:2881952447     

copyright@ 2020-2025  renrendoc.com 人人文库版权所有   联系电话:400-852-1180

备案号:蜀ICP备2022000484号-2       经营许可证: 川B2-20220663       公网安备川公网安备: 51019002004831号

本站为文档C2C交易模式,即用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知人人文库网,我们立即给予删除!