装订目录.doc

1939_立卧式33轴组合钻床上主轴箱设计

收藏

压缩包内文档预览:
预览图
编号:79723645    类型:共享资源    大小:1.75MB    格式:RAR    上传时间:2020-05-18 上传人:加Q294****549海量... IP属地:湖南
39
积分
关 键 词:
1939 卧式 33 组合 钻床 主轴 设计
资源描述:
1939_立卧式33轴组合钻床上主轴箱设计,1939,卧式,33,组合,钻床,主轴,设计
内容简介:
黄河科技学院毕业设计黄河科技学院本科毕业设计任务书 工 学院 机械 系 机械设计制造及其自动化 专业 2008 级 2 班学 号 080105082 学生 杨耀文 指导教师 贾百合 毕业设计(论文)题目: 立卧式33轴组合钻床上主轴箱设计 毕业设计(论文)工作内容与基本要求(目标、任务、途径、方法,应掌握的原始资料(数据)、参考资料(文献)以及设计技术要求、注意事项等):基本要求:1、 了解发动机机体大批量生产流水线中组合机床的原理、结构、工艺水平、分析使用现状及存在的问题;2、 分析三缸机体的结构、工艺流程及设计要求;3、 按组合机床设计规范要求完成设计任务。主要内容:1、 课题调研,搜集查阅资料,撰写文献综述;2、 装配图,主要零件图;3、 编写设计说明书,翻译外文资料。主要参考资料:1、 机械设计基础,张卫国,华中科技大学出版社; 2、 机械设计手册,机械设计委员会,机械工业出版社;3、 组合机床设计简明手册,谢家瀛,机械工业出版社。设计时间安排:1、 第12周(2月13日2月26日):完成开题报告;2、 第34周(2月27日3月11日):完成译文,文献综述;3、 第512周(3月12日5月6日):完成总体设计,设计说明书;4、 第13周(5月7日5月13日): 答辩文献准备完成;5、 第14周(5月14日5月19日): 答辩。毕业设计(论文)时间: 2012 年 02 月 13 日至 2012 年 05 月 15 日计 划 答 辩 时 间: 2012 年 05 月 19 日专业(教研室)审批意见:审批人签名:黄河科技学院毕业设计(论文)开题报告表课题名称立卧式33轴组合钻床上主轴箱设计课题来源教师拟订课题类型AX指导教师贾百合学生姓名杨耀文专 业机械设计制造及其自动化学 号080105082一、调研资料的准备根据任务书的要求,在做本课题前,查阅了与课题相关的资料有:机械设计基础、机械设计手册、组合机床设计简明手册、机械设计、机械制图、机械制造工艺学、与毕业设计指导手册等。二、设计的目的与要求 通过此次设计过程,了解发动机机体大批量生产流水线中组合机床的原理、结构、工艺水平、分析使用现状及存在的问题,以及分析三缸机体的结构、工艺流程及设计要求。 按组合机床设计规范要求完成设计任务。 三、设计的思路与预期成果 1、设计思路分析加工工艺,根据“三图一卡”绘制主轴箱原始设计依据图,确定主轴结构、轴颈及齿轮模数,拟定传动系统,用计算机计算和验算箱体轴孔的坐标尺寸,绘制主轴箱装配图、主要零件图及编制组件明细表。2、预期的成果(1)完成文献综述一篇,不少与3000字,与专业相关的英文翻译一篇,不少于3000字 (2)编写设计说明书一份(3)绘制主轴箱装配图,主要零件图(4)刻录包含本次设计的所有内容的光盘一张四、任务完成的阶段内容及时间安排1、第12周(2月13日2月26日):完成开题报告;2、第34周(2月27日3月11日):完成译文,文献综述;3、第512周(3月12日5月6日):完成总体设计,设计说明书;4、第13周(5月7日5月13日): 答辩文献准备完成;5、第14周(5月14日5月19日): 答辩。五、完成设计(论文)所具备的条件因素 本人已修完机械设计基础机械设计、机械制图、液压与气压传动、金属工艺学、机械制造技术基础、等课程,借助图书馆的相关文献资料,相关的网络等资源,查阅机械设计手册、组合机床设计手册毕业设计指导手册,以及良好的计算机绘图(CAD)操作能力。指导教师签名: 日期: 课题来源:(1)教师拟订;(2)学生建议;(3)企业和社会征集;(4)科研单位提供课题类型:(1)A工程设计(艺术设计);B技术开发;C软件工程;D理论研究;E调研报告 (2)X真实课题;Y模拟课题;Z虚拟课题要求(1)、(2)均要填,如AY、BX等。黄河科技学院毕业设计 (文献综述) 第 9 页回转式多工位组合机床现代社会中,人们为了高效、经济地生产各种高质量产品,日益广泛的使用各种机器、仪器和工具等技术设备与装备。为制造这些技术设备与装备,又必须具备各种加工金属零件的设备,诸如铸造、锻造、焊接、冲压和切削加工设备等。由于机械零件的形状精度、尺寸精度和表面粗糙度,目前主要靠切削加工的方法来达到,特别是形状复杂、精度要求高和表面粗糙度要求小的零件,往往需要在机床上经过几道甚至几十道切削加工工艺才能完成。因此,机床是现代机械制造业中最重要的加工设备。机床的技术性能直接影响机械产品的质量及其制造的经济性,进而决定着国民经济的发展水平。可以这样说,如果没有机床的发展,现代社会目前不可能达到现在物质文明的高度。1一个国家要繁荣富强,必须实现工业、农业、国防和科学技术的现代化,这就需要一个强大的机械制造业为国民经济各部门提供现代化得先进技术设备与装备,即各种机器、仪器和工具等。所以说,机床工业是机械制造业的“装备部”、“总工艺师”,对国民经济发展起着重大作用。因此,许多国家都十分重视本国机床工业的发展和机床技术水平的提高,使本国国民经济的发展建立在坚实可靠的基础上。2我国的机床工业是在1949年新中国成立以后才开始建立起来的。解放前,由于长期的封锁统治和19世纪中叶以后帝国主义的侵略和掠夺,我国的工农业生产非常落后,没有独立的机械制造业。至解放前夕,全国只有少数城市的一些规模很小的机械厂,制造少量简单的皮带车间、牛头刨床和砂轮等;1949年全国机床产量仅1000多台,品种不到10个。解放后,党和人民政府十分重视机床工业的发展。在解放初期的三年经济恢复时期,就把一些原来的机械修配厂改建为专业厂;在随后开始的几个五年计划期间,又陆续扩建、新建了一系列机床厂。经过50多年的建设,我国机床工业从无到有,从小到大,现在已经种类比较齐全,具有一定实力的机床工业体系,能生产5000多种机床通用品种,数控机床1500多种;不仅装备了国内的工业,而且每年还有一定数量的机床出口。3我国机床行业的发展是迅速的,成就是巨大的。但由于起步晚、底子薄,与世界先进水平相比,还有较大差距。为了适应我国工业、农业、国防和科学技术现代化的需要,为了提高机床产品在国际市场上的竞争能力,必须深入开展机床基础理论研究,加强工艺试验研究,大力开发精密、重型和数控机床,使我国的机床工业尽早跻身于世界先进行列。4世界上第一台组合机床于1908年在美国问世,30年代后组合机床在世界各国得到迅速发展。至今,它已成为现代制造工程的关键设备之一。现代制造工程从各个角度对组合机床提出了愈来愈高的要求,而组合机床也在不断吸取新技术成果而完善和发展。在组合机床(图1)这类专用机床中,回转式(回转工作台式和鼓轮式)多工位合机床和自动线占有重要位置。因为这类组合机床是采用多工位、多轴、多面和多方向同时加工工件的,因而具有很高的生产率。同时,这样的机床,工件经加工出基准后上机(线)或毛坯直接上机(线),可实现工件的全部加工。并且,由于工件在加工过程中往往是只需一次装夹,因而加工精度比较高。因此,这类机床是内燃机行业或其它一些大批量生产部门使用的重要技术装备。根据美国在19781983年这5年间对所生产的4856台组合机床所作的统计分析表,回转工作台组合机床占了/3,自动线41.5%(表1)。应用统计数字可以看出,回转工作台组合机床是仅次于自动线而为工业部门使用较多的高效加工设备。5回转式务工位组合机床,特别适合于加工轮廓尺寸在250mm以内的中小零件。这类机床的应用主要集中于汽车、阀门、气动、液压、制锁、轻工仪表和电气等工业部门。市场销量大,因此在国内外有许多从事其设计和制造的厂家。如欧美的rons-hoffen、Diedeoheim、witzig&Frank、Riello、IMAS、AugustWenzler、wiest、Haaf、RinoBerard、K.P.Pfiffner、J.Worner、Mikro、EugenBader、Kin-gsbury、H位11erHille、Etxe一TarSA和Posalux,日本的三协精机、岩田工机,前苏联的哈尔科夫小型组合机床厂(X3MAC)和我国的大连组合机床研究所、大连机床厂、常州机床厂和北方精密机械厂等。其中,北方精密机械厂是我国唯一专门从事回转工作台组合机床生产的专业厂,目前的生产能力为年产约30台。6据估计目前我国回转式多工位组合机床约占整个组合机床的4%,与机床工业发达的国家相比,无论在数量上还是在技术上均存在一定差距。因此,加速发展这类机床,以满足四化建设的需要,是我国机床行业面临的一项任务。回转式多工位组合机床按其回转输送装置的旋转轴线所处位置,可分为回转工作台式(铅垂轴线)和鼓轮式(水平轴线)两种。而回转工作台又可分为传统回转工作台、悬挂回转工作台和环形工作台三种结构型式(图2)。所有回转式多工位组合机床的共同特点是:工件沿回转工作台或鼓轮的圆周进行输送;在各加工工位上配置完成不同加工工艺的动力头,加工时,工件固定不动,由刀具实现旋转和进给。机床的第一个工位系上料(手动或自动)工位,接着是加工和测量工位。有的机床为实现工件的全部加工,在加工工位间设置工件的转位或换夹工位。卸料可在第一个工位上、也可在最后一个工位上进行,这样可使上下料时间与机动时间重叠。从结构配置上说,回转式多工位组合机床实际上是一种特殊型式的小型自动线。7回转式多工位组合机床具有下列优点:1)生产效率高;2)机床结构配置有利于操作和调整人员接近加工区,便于迅速调整机床;3)加工精度高(因加工过程中工件不需换夹);4)机床所占作业面积小;5)在加工时间内,可采用单独设置的装卸工位进行手动或自动上下料;6)在机床上几乎可以实现所有的切削加工工艺,也可附加无屑加工工艺。如:钻削、深孔钻削、铣削、车削、切槽、铰削、拉削、插削、去毛刺以及简单的装配等。8 组成回转式多工位组合机床的主要部件有回转分度装置、中间底座、 鼓轮支架、定位装置和动力头等。这些部件的结构和技术性能,在很大程度上决定了回转式多工位组合机床的结构型式及其技术水平。回转式多工位组合机床的回转分度驱动一般采用电气机械、液压和气动等方式。应用液压和电气机械驱动的较多(鼓轮的回转分度一般为液压驱动)而使甩气动驱动的较少。液压由于可采用较高的工作压力,故其结构空间比气动的小。目前,由于电液比例阀的应用,而大大提高了工作台的分度转位速度,缩短了分度转位时间。同时,由于电液比例阀可改善机床的起动和缓冲性能,故也可改善工作台定位时的工作条件。电气机械驱动主要有马氏槽盘和圆柱凸轮间歇运动机构。图所示是瑞士Mirkron公司回转工作台组合机床上所采用的圆柱凸轮间歇运动机构。采用这种驱动装置,工作台转位分度时平稳无冲击,故可采用一个高速电机进行驱动,从而缩短了辅助时间。回转工作台组合机床的中间底座和鼓轮式组合机床的鼓轮支架,从某种意义上说,是这类机床的核心部件,因为组成机床的所有其它部件均是环绕着这种部件配置的。因此,中间底座(或鼓轮支架)的稳定性和刚性对机床的工作精度具有重要影响。中间底座和鼓轮支架虽然多数是采用铸铁结构,但目前采用焊接结构的也逐渐在增多。9回转工作台组合机床的分散和集中传动回转工作台组合机床的传动结构基本上有两种:分散传动和集中传动。采用分散传动时,回转工作台分度传动和动力头的进给传动互为独立。这种结构的优点是,便于各部件的单独调整。特别是在机床上有几种工件轮番生产时,机床的调整较为方便。采用集中传动时,回转工作台的分度传动和各动力头主轴的进给是由一个机械驱动装置集中驱动的,这种传动可保证所有部件严格协调地工作,不会出现部件的误动作,从而提高机床工作的可性。采用机械集中传动还可减少热源对机工作精度的影响,同时,机械进给l十分定,也有利于提高工件的加工质量。但这传动不易改变切削参数,这样的机床专用都很强,因此,只适合于加工单一品种且大批量生产的诸如电子元器件、喷油嘴等较小工件。10自80年代初以来,随着世界经济的增长和竞争的加剧,产品市场的需求日益向满足个性化方向发展。产品品种增多,投产批量相应减少(由大批向中小批发展),供货期也越来越短。用于单一品种生产的传统组合机床和自动线已难于满足多品种生产的要求,组合机床制造业日益面临严峻的挑战,提高组合机床的柔性就成为关系到组合机床制造业生存和发展的紧迫任务。十多年来,许多组合机床制造厂先后开发了各种NC通用部件,如NC动力滑台、CNC三坐标加工模块和NC动力头(加工模块)等,并通过采用CNC控制和数据处理等技术来提高组合机床的柔性,以适应变型多品种加工。11用户的需求和相关技术的进步是推动组合机床技术不断发展的主要动力。近几年来,回转式多工位组合机床技术发展主要有以下趋向:1)近十多年来,现有刀具材料和刀具性能的不断改善以及新的刀具材料(涂层碳化钨硬质合全、碳(氮)化钛硬质合金、陶瓷刀具材料、立方氮化硼和聚晶金刚石等)的出现和推广应用,使机床的切削速度和进给速度有了较大幅度的提高,从而使切削基本时间大大缩短。同时,随着驱动技术的进步,机床辅助时间也显著减少,目前,回转工作台的分度时间一般为0.53.2秒。这样回转式多工位组合机床的节拍时间也随之缩短,目前,一般在630秒范围内。2)在机床上集成更多的加工工艺(包括各种切削工艺、成型工艺(滚压)和简一单的装配工艺等),进一步扩大了机床的工艺和应用范围。3)实现多面、多方向、多工位和多加工,进一步提高生产率。4)采用高精度端面齿盘定位和发展销定位,并采用滚珠预紧无间隙定位等,进一步提高回转分度工作台和鼓轮的分度位精度。5)在加工流程中实现工件夹具的自转位或工件自动换夹,从而在一台机床上现工件五面加工或完成从工件毛坯到成品全部加工。6)采用自动上下料装置,实现工件工的全部自动化。7)采用刀具尺寸测量控制和功能监系统,进一步提高机床的加工精度、自动水平和利用率。8)在机床上装夹多个工件,以提高产率。9)设置NC加工工位和采用CNC制,在保持高生产率的条件下提高机床性,实现多品种加工。12回转式多工位组合机床是一种高效自动化加工设备,是一种特殊型式的组合机床自动线。在工业发达国家,这种机床的应用遍及许多工业部门,其比例约占整个组合机床的三分之一。设计制造这类机床的不仅有一般机床厂,而且还有不少专业厂。根据国外的发展经验和国内汽车、阀门、电气、气动、液压和制锁等行业的发展需求,我们应重视并大力发展这类高效自动化的加工设备。为此,在我国应建立几个生产回转工作台式组合机床和鼓轮式组合机床的专业厂,并不断增强这些企业自身的研究开发能力,进一步提高这类机床的技术水平,以便满足国内经济建设的需求,并增强参与国际市场竞争的能力。13参考文献1赵红美,李静,耿亚楠.组合机床多轴箱 CAD 的应用现状 . 现代制造工程,2006 11 32-342黄勤,闫建伟.多轴箱传动设计的简易方法 . 现代机械,2005 1 45-473李如松.回转式多工位组合机床的技术现状 大连组合机床研究所 19934刘国光.组合机床多轴箱计算机辅助设计 . 机械与电子,2000 5 18-20.5大连组合机床研究所.组合机床设计 (第二版) M北京: 机械工业出版社,19856丛风廷,迟建山.组合机床设计 (第二版) M上海: 上海科学技术出版社,19937刘涛,刘伟.变速箱壳体销孔加工组合机床设计 M组合机床与自动化加工技术,2001(7) :24-258谢家瀛.组合机床设计简明手册M.北京:机械工业出版社,2002.9金振华主编。组合机床及其调整与使用.北京:北京工业出版社,199010 Menfred Weck. Handbook of Machine Tools M,1984.11大连组合机床研究所编.组合机床设计第一册.北京:机械工业出版社,197512 John. L. Feirer. Machine Tools Netalworking M,1973.13沈阳工学院等编.组合机床设计.上海:上海科技出版社,1985 单位代码 02 学 号 080105082 分 类 号 TH 密 级 毕业设计文献综述 院(系)名称工学院机械系 专业名称机械设计制造及其自动化 学生姓名杨耀文 指导教师贾百合2012年3月7日黄河科技学院毕业设计(文献翻译) 第 16 页 组合机床设计的模块化建模方法图尔加埃萨尔美国密歇根大学研究生研究助理机械工程系杰弗里L斯坦美国密歇根大学机械工程学系卢卡斯卢卡塞浦路斯大学机械与制造工程讲师部摘要在市场需求讯息万变的情况下,为提升工业竞争力,称为组合机床(RMTs)的新一代机床应运而生。为这些机床的高效设计,则须提出新的方法和工具。这是本文提出组合机床伺服轴模块化建模方法的目的,而这也只是努力发展集成的组合机床设计和控制环境的一部分。该机床的组件被模块化,这样就可以将相应的组件基于机床拓扑学装配起来得到任何特定的配置模型。组件模型使用内置的图形代码以促进所需模块库的直接发展。这些机床模块可用于评估,设计和机床伺服轴的控制。这种方法已有实践证明,人们对其优缺也有一定认识。结果表明,该方法是实现自动化和集成的机床设计环境很有希望的一步。人们对完成这个目标所要面对的挑战也进行了探讨。引言不断增长的竞争迫使制造商更快速地响应需求的变化。因此,制造商必须面对产品市场周期短,过渡时期短,型号和量变化频繁的情形,而且不能影响产品质量和成本。作为制造系统的核心,改进的机床在满足上面提到的需求上把握着关键技术。传统的机床在专用和柔性上的缺点今更胜昔:因其设计的重点在单一部件,使专用设备缺乏柔性机床所具备的灵活性和可扩展性。另一方面,柔性机床无法实现鲁棒性,高的成本效益和专用设备所有的生产量水平1。新一代机床在美国密歇根大学工程技术研究中心由Ann Arbor主持开发,为的是克服现有生产系统的不足部分为可重构制造系统而开发。这些机床称为组合机床(RMTs)2,它们结合了专业和灵活的优点。它们围绕一个零件族和他们的结构设计,在硬件和软件方面,可以快速的改变,经济有效地实现精确的功能和满足设备需求 3 。含多种配置,提供所需柔性和可扩展性,RMTs本质上导致了更复杂的机床设计问题。帮助促进RMTs设计的方法和工具将很大的促进可重构制造系统的应用4-6。RMTs设计问题的一个重要方面是发展动态模型的设计,伺服轴的控制和赋值。使RMTs建模问题独特的 是,即使仅有一台机床,也和存在几种不同的配置,且单独的模式,必须开发。为所有可能的配置开发动态模型可能是一个繁琐和费时的任务,即使利用了特别的方法。而且,没有系统的方法建模将需要大量的专业知识,并容易出错,从而降低了设计中使用模型的效率。本文提出了一种方法,可以有助于减少RMTs建模的时间,出错和麻烦。这一方法的核心思想是利用RMTs的模块化结构的优势,采取RMTs模块化建模方法的建模概念。首先,RMTs的物理组件的模块化建模方式是使用键合图建模工具7。该键合图模型被封装在一个定义的连接端口的示意图中。然后,原理组件模型按照给定的配置拓扑来组装获取配置模型。配置模型很容易与非动部件如插补器和控制器结合,这可用条形图方便体现;但是这超出了本文的范围。背景RMTs概念是由科伦和哥打2提出,从那时起,RMTs的设计就是一个活跃的研究领域。设计RMTs4的方法、工具以及评价结构刚度5和提示错误6设计的替代工具已经开发出来。然而,开发一个系统级建模方法的问题还没有解决。传统上,机床模型描绘伺服电机和驱动装置为第一或第二阶系统8,9 。然而,陈和特卢斯季认为一旦采用了高速机床伺服驱动的结构动力可能会影响系统性能 10。许多研究人员认定需要配合结构动力学在高速机床上使用高阶模型,以便能够成功设计其控制系统 11-13。这些论述清楚地表明,机床建模不是一项简单的任务和考虑复杂模型时必须要细心,但他们没有提供系统的建模方法,因此,仍然得应用特殊方法。为有助于设计和控制机床伺服驱动,仍有人努力做自动仿真模型的研究。威尔逊和斯坦开发了一个叫建模助手的软件程序能在一个给定的影响范围内自动创成机床驱动系统微型模型(FROI)14。该模型包括飞轮、一个扭转轴、一滚珠丝杠、一滚珠直流电动机、一个扭转连接键、带驱动和齿轮副的组成部分,其复杂性自动增加,直至超过规定FROI的特征值。这项工作仅是一个概念模型推演法则的证明,不能适用于任何真正的机床系统。不过,这种方法可以用来确定发展系统模型时其复杂性是否适当。戈蒂埃等已经开发出一种名为SICOMAT的软件包(仿真与控制的机床分析),这有助于建模,仿真,模态分析和控制器的一倍或两倍减震或两个机床轴耦合15。他们的模型由大量的模块和弹簧描述机械系统的动态特性。这项工作使得机床的建模过程更加系统,因此对建模工程师来讲是很有价值的工具,但它缺乏RMTs设计方式所要求的普遍性、模块性和柔性。RMTs建模方法如图1显示了所设想的RMTs建模环境。这对于实现RMTs建模任务自动化是理想的,而特定的RMTs的配置模型自动从标准组件模块库组装。这样所有人工或自动产生的候选设计都可以快速模拟,而其模型可用于就它们的伺服轴动态性能和帮助设计方面评价候选方案,如图一所示,模块化组件模型库是一个自动的RMT建模环境的重要组成部分。因此,拟议方式的第一步就是为了开发用于生成RMT配置组件的标准模型。本文将重点放在机械零件上,并讨论了它们模块化的建模方法。因为机械部件之间相互影响,促成它们的模块化,更有趣的造型。只交流如插补器和控制器信号的模块化建模的组件,提出了一种比较简单的问题,这儿不再讨论。为促进模块化和使组件与环境之间的能量交流更容易,键合图被作为了建模语言。键合图提供电力的物理系统的图形表示。此外,键合图用统一的方式描述了不同的能源领域,这对RMTs建模是相应的优势,因为他们的伺服轴可能包括来自不同领域如机械、电气或液压的组件。键合图只是用在这项工作中模型体现分级结构中的一级。键合图下一水平的数学方程式代表键合图体现的物理现象,这种数学体现只是层次结构中的最低水平。最高级别的键合图都被封装在一个示意图中,这不仅表现紧凑,而且还显示与环境融合的连接端口。图2说明了这种层次模式体现。这篇论文所有的模型显示在原理层次,因为本文的目的不是讨论他们的来历,而是想一旦得到这些模型能够做些什么。本文所用模型的详细描述在16中都可以找到。为了能够应付任何经历不同配置的机械部件的空间运动,使用了捕捉三维动态的模型。此外,最初的假设是,在机械领域范围内所有组成部分都可作为刚体充分体现。图3所示的有N连接端口的一般刚体是模块库中的一个主要模块。对应于刚体上兴趣点的端口,与环境发生物理上的交互。关系用于指示端口是原子端口,如主要部分能通过端口与所处环境交换能量。而现行的关系则指出了信号端口。只有信息通过这些端口传输。模型库还包含三维连接模块可用于描述构件模型的相关运动。这些联合模块和端口也以标准开发,这样他们可以连接到其他模型模块。该库提供了两种方法来表达制约因素:(1)硬的弹簧和减震器可以用来实现更现实的限制,或近似理想的限制;(2)拉格朗日乘数可以引进来表达理想约束。对于联合模块的论述读者也被称为16。一旦模型库由一些基本的模块化刚体和模型组建,建模过程可以进行如下:RMT构件被分解成单件,每个单件与库中的模型相关。如果库中的模型模块都不能完全描述这个单件,那么必须开发一个新的相关模块并添加到库中。然后,模型根据构件拓扑并使用必要的结合块组装。一旦获得组件模型,它可以存储在库中备用。最后,组件模型按照给定的配置拓扑获得该配置模型的组装。这个过程可以用图4的流程图及以下部分的例子给予证明。实例下面两个例子给提议的建模方法一个概述。第一个例子显示了一个幻灯片建模和第二个例子采用该幻灯片模式发展为RMTs模式。这些例子的目的是提供一个关于组件的模块化如何用在建模流程中的总体思路,而不是解释每个(子)组件如何识别和建模的详细信息。因此,该模型模块的细节如它们的复杂程度都没有讨论。滑动体建模是大多数机床工具基本组成部分,包括RMTs。不同的RMTs配置可以通过添加/删除滑动体获得或重新配置现有结构中的滑动体。因此演示一个滑动体建模流程是有益的。参看图5所示的滑动体。这是假设的构成部分即如图所示。本示例的目的,所有除电机外的子构件可以像刚体与各连接点样建模。电动机的动力可分为两个用途:三维架构刚体动力和驱动转子和定子之间旋转运动的机电动力。电动机获取双领域动力的模型也已经开发出来,其示意图由图6给出。弓形RMT的模型是由美国国家科学基金会工程研究中心可重构制造系统在密歇根大学开发的,是世界上第一个完整规模的RMTs。这是一个3轴机床,其设计围绕着具有五个不同表面族,这些表面倾角变化范围从-15 至45 ,一次增量15 。它还具有如磨削、钻削加工任意角度的柔性。弓形RMT的可重构性来自于主轴单元,它可通过弓形模块的弯曲导向槽移动从而在上面提到的5个角度得到配置,然后在任意一个位子上由机械挡块固定。为了举例假设基本模块是完全相同的,并对机床没有动力的影响。该工作台、圆柱、主轴基本上都是滑动体,其模型都以上述滑动体模型为基础。该拱被建模为刚体并带有与每个机械挡块连接的端口。最后,该拱式RMT模型按实际机器的拓扑结构组装。要注意这个数字显示的模型只是配置之一。其他配置的模型可通过改变拱模型连接端口得到。既然模型已组装,运动方程可以自动从图形模式得出,并执行仿真。尽管数学模型准备好了,由于当前缺乏好的系统参数估计,我们不能在本文中提供任何仿真结果。一旦参数值可用仿真就很容易进行。讨论本文中标准建模和分级建模概念被确定为RMTs建模方法的主要特点。RMTs的模块化结构使这种建模方法很有益处,因为这些模型包含了所有可重构的重要特征17:1模块化:(子)组件建模模块化2可集成:该模块可以通过其连接端口与其他模块集成3定制:详细程度包括了模型模块都可为单个组件进行定制4可重构性:模型可以很容易地从一个配置转换到另一个5诊断性:可方便地进行模块的模型验证本文介绍的方法可以将建模任务分为两个步骤:(1)开发组件模型;(2)装配配置模型。虽然第一步仍然需要大量的建模知识,第二步更系统,甚至将来要实现自动化。此外,两个步骤各有侧重:第一步的重点是组件内动态,而第二个步骤重点是组件之间的动态。相对于伺服轴建模现有的方法,各个不同的RMTs配置都是一个潜在的新建模问题,本文提出的方法允许配置模式更快的发展。配置可以使用库中的模型模块快速组装,假若如此,使用在给定配置的所有组件在模库中都有对应的模块。因此,一个完善的模型库对这一方法的有效性是必不可少的。对机床的机械部件三维多体建模方法推动了机械领域的模块化。因此,机床滑动模型可用于任何配置,例如在一个滑台移动有更多约束的环境下而不需要特别的滑台模型。以多体的方法,开发通用组件模型可以没有组件接口的先验知识。然而三维多体方法的一个缺点是通用模型可能比某一实际配置的需求更复杂。例如,在给定的配置中一个组件可能只是被限制在一个平面运动中,在这种情况下,三维模型就过复杂了。该模型应该简化,否则模型中不必要的复杂性降低了模型的计算效率。拟议的模块化建模方法将从集成模型降阶算法中受益。这将是今后工作的重点。目前,该机构被认为是刚性,这并不总是很接近。为了能够研究结构动力学的影响,柔性的机构模式也应开发并添加到模库内。最后,值得注意的是商业可用软件包如ADAMS,、DADS、 EASY5、 Dymola 等也可用于RMTs建模的目的。然而,采取统一强大的键合图提供的功能基础方法,并简化未来的模式使其更易于实施,那么键合图就被选为建模语言。概要和结论模块化建模方法被提议作为组合机床建模方法。这些部件在标准方式下建模,这么做的目的就是为了在组建给定的机床配置模型时只需将相应的模块组装就可以了。本文给出了两个例子来说明这种方法,并且讨论了这种方法的优劣。这项工作的结果表明,RMTs的模块化建模问题可以使建模过程系统化,这样对于在职工程师来讲要获得自动的设计建模环境有潜在的用处。但是如在讨论中所强调的那样,仍然有很多挑战需要在自动化建模环境切实执行之前落实。致谢这项工作是在欧洲经济共同体9529125授权下由国家科学基金会可重构制造系统工程技术研究中心支持的。A MODULAR MODELING APPROACH FOR THE DESIGN OF RECONFIGURABLE MACHINE TOOLSTulga ErsalGraduate Student Research Assistant Department of Mechanical Engineering University of MichiganJeffrey L. SteinProfessor Department of Mechanical Engineering University of MichiganLoucas . LoucaLecturer Department of Mechanical and Manufacturing Engineering University of CyprusABSTRACTA new generation of machine tools called Reconfigurable Machine Tools (RMTs) is emerging as a means for industry to be more competitive in a market that experiences frequent changes in demand. New methodologies and tools are necessary for the efficient design of these machine tools. It is the purpose of this paper to present a modular approach for RMT servo axis modeling, which is part of a larger effort to develop an integrated RMT design and control environment. The components of the machine tool are modeled in a modular way, such that the model of any given configuration can be obtained by assembling the corresponding component models together based on the topology of the machine. The component models are built using the bond graph language that enables the straightforward development of the required modular library. These machine tool models can be used for the evaluation, design and control of the RMT servo axes. The approach is demonstrated through examples, and the benefits and drawbacks of this approach are discussed. The results show that the proposed approach is a promising step towards an automated and integrated RMT design environment, and the challenges in order to complete this goal are discussed. INTRODUCTIONThe ever-growing competition forces manufacturers to respond more quickly to changes in demand. As a result, manufacturers have to deal with short product life cycles, short ramp-up times and frequent changes in product mix and volumes, without compromising product quality and cost.Being the heart of a manufacturing system, improved machine tools hold the key in meeting the above mentioned requirements. The shortcomings of conventional machine tools, which can be classified as dedicated and flexible, are being felt more today than in the past: With their design focus being a single part, dedicated machines lack the flexibility and scalability that the flexible machines offer. On the other hand, flexible machines cannot achieve the robustness, the cost-effectiveness and the throughput levels of dedicated machines1. A new generation of machine tools is being developed in the Engineering Research CenterforReconfigurable Manufacturing Systems at the University of Michigan, Ann Arbor, as part of an effort to overcome the insufficiencies of current manufacturing systems. These machine tools are called Reconfigurable Machine Tools (RMTs) 2, and they combine the advantages of their dedicated and flexible counterparts. They are designed around a part family and their structure, in terms of both hardware and software, can be changed quickly and cost-effectively to achieve the exact functionality and capacity desired 3. Containing several configurations to provide the needed flexibility and scalability, RMTs intrinsically lead to more complex machine tool design problems. Methodologies and tools that would help facilitate the design of RMTs could highly benefit and encourage the employment of reconfigurable manufacturing systems 4-6. One important aspect of the RMT design problem is developing dynamic models for the design, evaluation and control of servo axes. What makes the problem of modeling RMTs unique is that even though there is a single machine tool, there exist several configurations, which separate models have to be developed for. Developing dynamic models for all possible configurations could be a cumbersome and time-consuming task if ad hoc methods are utilized. Moreover, without a systematic methodology modeling would require a lot of expertise and would be prone to errors, which would degrade the efficiency of using models in the design.In this paper we present a methodology that could help make the RMT modeling task less time demanding, less error-prone and less challenging. The key idea of this methodology is to take advantage of the modular structure of the RMTs and adopt modular modeling concepts into the RMT modeling methodology. First, the physical components of an RMT are modeled in a modular way using the bond graph modeling tool 7. The bond graph model is encapsulated in a schematic representation with defined connection ports. Then, the schematic component models are assembled by following the topology of a given configuration to obtain the model of the configuration. The configuration model can be easily integrated with the modules of non-energetic components such as interpolators and controllers, which can be conveniently represented with block diagrams; however this is beyond the scope of this paper. BACKGROUNDThe RMT concept was introduced by Koren and Kota 2, and since their introduction, the design of RMTs has been an active research area. Methodologies and tools for designing RMTs 4 as well as evaluating structural stiffnesses 5 and tool tip errors 6 of de sign alternatives have been developed. However, the problem of developing a system level modeling methodology for RTMs has not been addressed yet. Traditionally, machine tool models depict the machine tool as a group of servomotor and feed drive assemblies that aremodeled as first or second order systems 8,9. Chen and Tlusty, however, showed that the structural dynamics of the feed drive could affect the system performance once high-speed machine tools are considered 10. Many researchers identified the necessity to use higher order models for high-speed machine tools to cope with structural dynamics in order to be able to design the control system successfully 11-13.These publications clearly indicate that modeling a machine tool is not a trivial task and care must be taken when deciding on the complexity of the model, but they do not provide a systematic way of modeling and, therefore, remain application specific approaches.There have been research efforts to help the design and control of machine tool feed drives by automatically providing simulation models. Wilson and Stein developed a software program called Model-Building Assistant to automatically synthesize a minimum order model of the machine tool drive system for a given frequency range of interest (FROI) 14. The complexity of the model, which includes a flywheel, a torsional shaft, a ballscrew , a ballnut, a DC motor, a torsional coupling, a belt-drive and a gear-pair as components, is automatically increased until the eigenvalues of the system fall beyond the specified FROI. This work was a proof of concept for a model deduction algorithm and can not be applied to any real machine tool system. However, such algorithm can be used to determine the appropriate model complexity after the development of the system model.Gautier et al. have developed a software package called SICOMAT (Simulation and Control analysis of Machine Tools) which helps with the modeling, simulation, modal analysis and controller tuning of one or two decoupled or two coupled machine tool axes 15. Their models describe the dynamics of the mechanical system by a number of masses and springs. This work makes the modeling of a machine tool process more systematic, and is therefore a valuable tool to the modeling engineer; however, it lacks the generality, modularity and flexibility that the RMT design methodology demands. The RMT modeling methodology Figure1 showstheenvisioned RMT modeling environment. It is desired to automate the task of RMT modeling, where the model of a given RMT configuration is automatically assembled from a library of modular component models. This way, all the candidate designs, which are generated either manually or automatically 4, can be modeled quickly and the models can be used to evaluate the candidates in terms of their servo axis dynamic performance and help with their design. As Figure1 also implies, the modular component model library is a key part for the automated RMT modeling environment. Therefore, the first step of the proposed methodology is to develop modular models for the components that are used to generate the RMT configurations. This paper puts the emphasis on mechanical parts and discusses their modeling in a modular way, because the energy interaction between the mechanical components makes their modular modeling more intriguing. Modular modeling of components that only exchange signals, e.g. interpolators and controllers, presents a relatively simpler problem and are not discussed here. To promote modularity and to be able to deal with the energy interactions between the components and their environment rather easily, bond graphs are utilized as the modeling language. Bond graphs provide a power-based graphical representation of a physical system. Moreover, bond graphs describe different energy domains in a unified way, which is a relevant advantage for RMT modeling, since their servo axes may include components from different energy domains, such as mechanical, electrical or hydraulic. Bond graphs are only one level in the hierarchy of model representations used in this work. Underneath the bond graph level the mathematical equations represent the physical phenomena captured by the bond graph and this mathematical representation is the lowest level in the hierarchy. In the highest level bond graphs are encapsulated in a schematic representation, which not only allows for a compact representation, but also shows the connection ports where the model can interact with its environment. Figure 2 illustrates this hierarchy of model representations.In this paper all the models are shown in the schematic level, because the goal of this paper is not to discuss their derivation, but rather to show what can be done once those models are obtained. A detailed description of the models used in this paper can be found in 16.In order to be able to cope with any spatial motion that the mechanical components may go through in different configurations, models that capture the three-dimensional dynamics are used. Moreover, the initial assumption is made that in the mechanical domain all components can be adequately represented as rigid bodies.Figure 3 shows the schematic representation of a generic rigid body with N connection ports, which is one of the main model modules in the library. The ports correspond to points of interest on the rigid body, where the physical interactions with the environment occur. Bonds (lines with half arrows) are used to indicate that a port is a power port, i.e. the body can exchange energy with its environment through those ports, whereas active bonds (lines with full arrows) indicate signal ports, i.e. only information is transferred through these ports. The model library also contains three-dimensional joint models that can be used to describe the relative motions between the component models. These joint models are also developed in a modular way with ports, where they can be connected to other model modules. The library offers two ways to express the constraints: (1) stiff springs and dampers can be used to implement more realistic constraints or to approximate ideal constraints;(2) Lagrange multipliers can be introduced to express the constraints ideally. For a discussion of joint models the reader is also referred to 16.Once the model library is populated with some basic modular rigid body and joint models, the modeling procedure can be carried out as follows: The RMT components are broken down into subcomponents and each subcomponent is associated with a model in the library. If none of the model modules in the library can describe the subcomponent adequately, a new model has to be developed for that subcomponent and added to the library. Then, the models are assembled by following the topology of the components and using the necessary joint models. Once a component model is obtained, it can be stored in the library for reuse. Finally, the component models are assembled by following the topology of a given configuration to obtain the model of that configuration. The process is illustrated in Figure 4 as a flowchart and demonstrated in the following section through examples.EXAMPLESThe following two examples give an overview of the proposed modeling methodology. The first example shows the modeling of a slide and the second example employs that slide model to develop a model for a RMT. The purpose of these examples is to give a general idea about how the modularity of the components can be exploited in the modeling procedure, rather than to explain the details of how each (sub)component can be identified and modeled. Therefore, the details of the model modules, such as their level of complexity, are not discussed.Modeling a Slide A slide is a basic component of most machine tools, including RMTs. Different RMT configurations can beobtained by adding/removing slides to/from the configuration or by rearranging the existing slides in the configuration. Therefore, it is useful to demonstrate the modeling procedure of a slide. Consider the slide shown in Figure 5. It is assumed that the components are identified as shown in the figure. For the purposes of this example, all the subcomponents except the motor can be modeled as rigid bodies with various number of connection points. The motor dynamics can be broken down into two domains: the three-dimensional rigid body dynamics of the housing and the electromechanical dynamics that drive the relative rotational motion between the rotor and the stator. A model has been developed for the motor that captures the dynamics in both domains and its schematic representation is given in Figure 6.Modeling the Arch-type RMT, which was developed by the NSF Engineering Research CenterforReconfigurable Manufacturing Systems at the University of Michigan, is the worlds first full scale RMT. It is a three-axis machine tool that is designed around a part family with five different surface inclinations ranging from -15 to 45 at 15 increments and has the flexibility of doing machining operations such as milling and drilling at any of those angles. The reconfigurability of the Arch-type RMT comes from the spindle unit, which can be configured at the five angles mentioned above by moving it along the curved guide way of the arch module and fixing it at any of the five locations on the arch module that are defined by mechanical stops. For the purposes of this example the base module is assumed to be identical to the ground and it has no effect on the dynamics of the machine tool. The worktable, the column and the spindle are essentially slides and their models are based on the slide model given above. The arch is modeled as a rigid-body with a connection port for each mechanical stop. Finally, the model of the Arch-type RMT is assembled by following the topology of the actual machine. Note that the figure shows the model for one of the configurations only. The models for the other configurations can be obtained by changing the connection port of the arch model. Now that the model is assembled, the equations of motion can be derived from the graphical model automatically, and simulations can be performed. Although the mathematical model is ready, we cannot provide any simulation results in this paper due to the current lack of good estimates of system parameters. Simulations can be carried out easily once the parameter values are available.DISCUSSIONIn this paper, modular and hierarchical modeling concepts are identified as the key characteristics of the RMT modeling methodology. The modular structure of RMTs makes this modeling approach beneficial, because the models contain all the key characteristics of reconfigurability 17:1.Modularity: The (sub)components are modeled in a modular way 2.Integrability: The models can be integrated with other modules through their connection ports 3.Customization: The level of detail included in the model modules can be customized for individual components4.Convertibility: Models can be easily converted from one configuration to another 5.Diagnosability: Model verification can be carried out easily on model modulesThe approach presented in this paper allows for the separation of the modeling task into two steps:(1) Developing component models;(2) assembling the configuration model. While the first step still requires a significant modeling expertise, the second step is much more systematic, and can even be automated, which is left as a future work. Also, the two steps have different focuses: The first step focuses on the dynamics within a component, whereas the second step focuses on the dynamics between the components.Compared to the existing approaches of servo axis modeling, where every different RMT configuration would potentially be a new modeling problem, the approach presented in this paper allows for a faster development of configuration models. Configurations can be assembled quickly using the model modules in the library, provided that all the components utilized in a given configuration have a corresponding model module in the library. Therefore, having a comprehensive model library is essential for this methodology to be efficient.A three-dimensional multibody approach to modeling the mechanical components of the machine tool promotes modularity in the mechanical domain. Thus, for example, the model of the machine tool slide can be used in any configuration without having a special slide model for circumstances where the base of the slide is constrained to move in more restricted ways. With a multibody approach, generic component models can be created without a-priori knowledge of the connectivity of the components. A drawback of the three-dimensional multibody approach is, however, that the generic models might be more complex than a certain configuration actually demands. For example, in a given configuration a component can be limited to a planar motion only, in which case a three-dimensional model would be overcomplex. The model should be simplified; otherwise unnecessary complexity is retained in the model and reduces the computational efficiency of the model. The proposed modular modeling methodology would benefit from the integration with a model order reduction algorithm. This will be the focus of future work.Currently the bodies are considered rigid, which is not always an adequate approximation. In order to be able to study the effects of the structural dynamics, flexible body models should also be developed and included in the library. Finally, it is worthwhile to note that commercially available software packages, such as ADAMS, DADS, EASY5, Dymola etc, could also be used for the purposes of RMT modeling. However, to take advantage of the unified powerbased approach that the bond graphs provide and to make a future model reduction easier to implement, bond graphs are chosen as the modeling language.SUMMARY AND CONCLUSIONS A modular modeling approach is proposed as a RMT modeling methodology. The components are modeled in a modular way, so that the modeling task of a given RMT configuration merely involves assembling the corresponding model modules together. Two examples are given to illustrate the methodology, and advantages and disadvantages of this approach are discussed. The outcomes of this work indicate that a modular approach to the problem of modeling RMTs can make the modeling proce
温馨提示:
1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
2: 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
3.本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
提示  人人文库网所有资源均是用户自行上传分享,仅供网友学习交流,未经上传用户书面授权,请勿作他用。
关于本文
本文标题:1939_立卧式33轴组合钻床上主轴箱设计
链接地址:https://www.renrendoc.com/p-79723645.html

官方联系方式

2:不支持迅雷下载,请使用浏览器下载   
3:不支持QQ浏览器下载,请用其他浏览器   
4:下载后的文档和图纸-无水印   
5:文档经过压缩,下载后原文更清晰   
关于我们 - 网站声明 - 网站地图 - 资源地图 - 友情链接 - 网站客服 - 联系我们

网站客服QQ:2881952447     

copyright@ 2020-2025  renrendoc.com 人人文库版权所有   联系电话:400-852-1180

备案号:蜀ICP备2022000484号-2       经营许可证: 川B2-20220663       公网安备川公网安备: 51019002004831号

本站为文档C2C交易模式,即用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知人人文库网,我们立即给予删除!