期末数理统计_第1页
期末数理统计_第2页
期末数理统计_第3页
期末数理统计_第4页
期末数理统计_第5页
已阅读5页,还剩40页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

复习课,第五章统计量及其分布,5.1总体与样本5.2样本数据的整理与显示5.3统计量及其分布5.4三大抽样分布5.5充分统计量,样本均值的分布,样本方差的分布,n取不同值时的分布,证明:,所以,例2,解,例3,解,例4设x1,x2,xn是取自总体U(0,)的样本,即总体的密度函数为,于是样本的联合密度函数为,取T=x(n),并令g(t;)=(1/)nIt,h(x)=1,由因子分解定理知T=x(n)是的充分统计量。,p(x1;)p(xn;)=,0,其它,(1/)n,0minximaxxi,由于诸xi0,所以我们可将上式改写为,p(x1;)p(xn;)=(1/)nI,x(n),练习:设x1,x2,xn是来自泊松分布P()的一个样本,证明,是充分统计量。,取T(x)=xi,h(x)=,P(X=x)=T(x)e-nh(x),由因子分解定理,T(x)=xi是的充分统计量。,则上式可改写为,6.1点估计的几种方法6.2点估计的评价标准6.5区间估计,第六章参数估计,点估计的几种方法,替换原理和矩法估计,替换原理是指用样本矩及其函数去替换相应的总体矩及其函数,譬如:用样本均值估计总体均值E(X),即;用样本方差估计总体方差Var(X),即用样本的p分位数估计总体的p分位数.,矩法估计的基本思想:,用样本矩,代替母体矩,即,从中解出.,例5x1,x2,xn是来自(a,b)上的均匀分布U(a,b)的样本,a与b均是未知参数,这里k=2,由于不难推出由此即可得到a,b的矩估计:,解:,练习,极大似然估计的关键点,X1,X2,Xn出现的可能性:,(1)离散场合:,(2)连续场合:,称以上L的为似然函数。,例6求泊松分布中参数l的最大似然估计.解已知总体x的概率函数为,泊松分布(续),例7:指数分布,已知,x1,x2,.,xn为x的一组样本观察值,求q的最大似然估计.,解似然函数,解似然函数为,对数似然函数为,练习:设X1,X2,Xn是取自总体X的一个样本,求的最大似然估计值.,其中0,求导并令其为0,=0,从中解得,即为的最大似然估计值.,对数似然函数为,1、相合性(大样本的角度)2、无偏性(从期望的角度)3、有效性(从方差的角度)4、均方误差准则(角度),点估计的评价标准,解似然函数要使L()达到最大,即1/n尽可能大,所以的取值应尽可能小,但不能小于X(n),由此给出的极大似然估计:,例8设x1,x2,xn是来自均匀总体U(0,)的样本,证明的极大似然估计是相合估计。,由次序统计量的分布,我们知道x(n)的分布密度函数为p(y)=nyn-1/n,y0,ii)H0:0H1:2.776,故拒绝原假设,认为该厂生产的铝材的长度不满足设定要求。,若取=0.05,则t0.975(4)=2.776.,故,单个正态总体方差的检验,设是来自的样本,对方差亦可考虑如下三个检验问题:,通常假定未知,它们采用的检验统计量是,相同的,均为若取显著性水平为,则对应三个检验问题的拒绝域依次分别为,1000位高中生的性别与色盲调查数据,解:用A表示性别情况,它有两个水平:表示性别为男,表示性别为女;B表示视觉情况,它有两个水平,分别表示表中两种情况。沿用前面的记号,首先建立假设H0:性别与色盲无关联,即A与B独立的。统计表示如下:,在原假设H0成立下,我们可以计算诸参数的极大似然估计值:,表7.4.6诸的计算结果,此处r=2,c=2,(r-1)(

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论