




已阅读5页,还剩10页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
辽宁省普兰店市第一中学2020学年高一上学期期中考试数学试题一选择题:(本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的.)1.已知集合,则=( )A. -1,0 B. 0,1 C. -1,0,1 D. 0,1,2【答案】A【解析】【分析】解出集合B的元素,再由集合的交集的概念得到结果即可.【详解】=,则=-1,0故答案为:A .【点睛】高考对集合知识的考查要求较低,均是以小题的形式进行考查,一般难度不大,要求考生熟练掌握与集合有关的基础知识纵观近几年的高考试题,主要考查以下两个方面:一是考查具体集合的关系判断和集合的运算解决这类问题的关键在于正确理解集合中元素所具有属性的含义,弄清集合中元素所具有的形式以及集合中含有哪些元素二是考查抽象集合的关系判断以及运算2.下列函数中,在区间上为增函数的是A. B. C. D. 【答案】C【解析】【分析】根据已知函数的规律得到函数的增减性,即可.【详解】为减函数,B. 为减函数,C. 在上是增函数,D. 在所给区间内是减函数。故答案为:C.【点睛】本题考查了函数的单调性判断,函数的单调性,一般小题直接判断函数在所给区间内是否连续,接着再判断当x变大时y的变化趋势,从而得到单调性.3.若函数f 对于任意实数x总有 且f在区间 上是减函数,则( )A. B. C. D. 【答案】B【解析】【分析】f(x)=f(x)可得f(x)为偶函数,结合f(x)在区间(,1上是减函数,即可作出判断【详解】f(x)=f(x),f(x)为偶函数,又f(x)在区间(,1上是减函数,f(2)=f(2),21,f(1)f()f(2)故选:B【点睛】本题考查函数的奇偶性与单调性,关键在于根据其奇偶性将要比较的数转化到共同的单调区间上,利用单调性予以解决,属于基础题4.若,则下列不等式中不成立的是A. B. C. D. 【答案】B【解析】特殊值法,令5.已知函数,若,则的值是( )A. B. C. D. 【答案】C【解析】【分析】根据,可分情况讨论当a0,和当时,分情况讨论即可.【详解】已知,当时,解得a=-3,满足题意;当a0时,-2a=10,解得a=-5,舍去;故a=-3.故答案为:C.【点睛】求分段函数的函数值,要先确定要求值的自变量属于哪一段区间,然后代入该段的解析式求值,当出现的形式时,应从内到外依次求值;求某条件下自变量的值,先假设所求的值在分段函数定义区间的各段上,然后求出相应自变量的值,切记代入检验,看所求的自变量的值是否满足相应段自变量的取值范围.6.不等式的解集是( )A. B. C. D. 【答案】B【解析】,即,解得或,即不等式的解集是,故选B.7.下列命题中,真命题的是( )A. B. C. D. 对恒成立【答案】D【解析】【分析】A,举出反例即可;B,可判断原方程无解,即可得到B错误;C,解得a1,可判断出命题错误,D,举出a的值即可.【详解】,错误,当x=0.2时,不满足;B.方程的判别式小于0,故方程无解,故B错误;C,解得a1,故C不正确;D令a1,即可满足条件,对任意的x均有成立,故正确。故答案为:D.【点睛】要判定特称命题“”是真命题,只需在集合中找到一个元素,使成立即可;如果在集合中,使成立的元素不存在,那么这个特称命题是假命题判断特称命题的真假时,一定要结合生活和数学中的丰富实例,通过相关的数学知识进行判断8.“”是“”的( )A. 充要条件 B. 必要不充分条件C. 充分不必要条件 D. 既不必要也不充分条件【答案】C【解析】 的充要条件为或 ,所以 是的充分不必要条件。故选C。9.函数的最小值是()A. 22 B. 22 C. 2 D. 2【答案】A【解析】【分析】先将函数变形可得y=(x1)+2,再利用基本不等式可得结论【详解】y=(x1)+2x1,x10(x1)+2(当且仅当x=+1时,取等号)y=2+2故选:A【点睛】本题考查函数的最值,考查基本不等式的运用,属于中档题在利用基本不等式求最值时,要特别注意“拆、拼、凑”等技巧,使其满足基本不等式中“正”(即条件要求中字母为正数)、“定”(不等式的另一边必须为定值)、“等”(等号取得的条件)的条件才能应用,否则会出现错误.10. 如图中的图象所表示的函数的解析式为( )A. B. C. D. 【答案】B【解析】【分析】分段求解:分别把0x1及1x2时的解析式求出即可【详解】当0x1时,设f(x)=kx,由图象过点(1,),得k=,所以此时f(x)=x;当1x2时,设f(x)=mx+n,由图象过点(1,),(2,0),得,解得 所以此时f(x)=函数表达式可转化为:y |x1|(0x2)故答案为:B【点睛】本题考查函数解析式的求解问题,本题根据图象可知该函数为分段函数,分两段用待定系数法求得11.下列命题中正确的是 ()A. 函数的最小值为B. 设集合,则的取值范围是C. 在直角坐标系中,点在第四象限的充要条件是或D. 若集合,则集合的子集个数为7【答案】C【解析】【分析】A根据均值不等式得到最值;B,根据题干条件得到;C,点位于第二象限即;D集合化为子集个数为:8个.【详解】A,函数= ,最大值为,故A不正确;B,集合,则,故B不正确;C. 在直角坐标系中,点在第四象限的充要条件是,故C正确;D. 集合=子集个数为:8个.故答案为:C。【点睛】这个题目考查的是命题真假的判断,用到均值不等式求最值,集合的并集运算,点所在象限和坐标的特点的关系,以及集合子集个数的判断. 在利用基本不等式求最值时,要特别注意“拆、拼、凑”等技巧,使其满足基本不等式中“正”(即条件要求中字母为正数)、“定”(不等式的另一边必须为定值)、“等”(等号取得的条件)的条件才能应用,否则会出现错误.12.已知定义在上的函数的图像经过点,且在区间单调递减,又知函数为偶函数,则关于的不等式的解为 ( )A. B. C. D. 【答案】D【解析】【分析】由题意可得f(3)=0,f(x+2)=f(x+2),即函数f(x)关于直线x=2对称,f(x)在(,2单调递增,且f(1)=f(3)=0,可得1x+13,解不等式即可得到所求解集【详解】定义在R上的函数f(x)的图象经过点M(3,0),可得f(3)=0,f(x)在区间2,+)单调递减,又知函数f(x+2)为偶函数,可得f(x+2)=f(x+2),即函数f(x)关于直线x=2对称,f(x)在(,2单调递增,且f(1)=f(3)=0,由f(x+1)0,可得1x+13,解得0x2,即解集为(0,2),故选:D【点睛】本题考查函数的奇偶性、单调性和对称性的应用,注意定义法的应用,考查不等式解法,属于中档题二填空题:(本大题共4小题,每小题5分)13.函数的定义域为_【答案】【解析】【分析】函数的定义域为:,写成区间形式即可.【详解】函数的定义域为: 即故答案为:.【点睛】常见的求定义域的类型有:对数,要求真数大于0即可;偶次根式,要求被开方数大于等于0;分式,要求分母不等于0,零次幂,要求底数不为0;多项式要求每一部分的定义域取交集。14.已知,则的最小值为_【答案】【解析】,则,当且仅当,等号成立,所以的最小值为故答案为.【易错点晴】本题主要考查利用基本不等式求最值,属于难题. 利用基本不等式求最值时,一定要正确理解和掌握“一正,二定,三相等”的内涵:一正是,首先要判断参数是否为正;二定是,其次要看和或积是否为定值(和定积最大,积定和最小);三相等是,最后一定要验证等号能否成立(主要注意两点,一是相等时参数否在定义域内,二是多次用或时等号能否同时成立).15.若命题“”是真命题,则实数a的取值范围是 _【答案】【解析】【分析】根据二次函数的性质得到关于a的不等式,解出即可【详解】x0R,x02+(a1)x0+10,则=(a1)240,解得:a3或a1,故答案为:.【点睛】本题考查了特称命题的真假,考查二次函数的性质,是一道基础题一般命题的否定通常是保留条件否定其结论,得到真假性完全相反的两个命题;含有一个量词的命题的否定,是在否定结论的同时,改变量词的属性,即全称量词改为存在量词,存在量词改为全称量词注意:命题的否定只否定结论,而否命题是条件与结论都否定16.设ab0,则的最小值是_.【答案】4【解析】a2a2ababa(ab)ab224.当且仅当a(ab)1且ab1,即a,b时取等号三解答题:解答应写出文字说明,证明过程或演算步骤.17.已知集合或.(1)若,求的取值范围;(2)若“”是“”的充分条件,求的取值范围.【答案】(1); (2)或.【解析】【分析】(1),故得到;(2)根据题意得到,故或即可.【详解】(1),的取值范围是(2)因为“”是“”的充分条件,或的取值范围是或.【点睛】判断充要条件的方法是:若pq为真命题且qp为假命题,则命题p是命题q的充分不必要条件;若pq为假命题且qp为真命题,则命题p是命题q的必要不充分条件;若pq为真命题且qp为真命题,则命题p是命题q的充要条件;若pq为假命题且qp为假命题,则命题p是命题q的即不充分也不必要条件判断命题p与命题q所表示的范围,再根据“谁大谁必要,谁小谁充分”的原则,判断命题p与命题q的关系 18.已知不等式 的解集为 (1)求a的值;(2)若不等式的解集为R,求实数m的取值范围.【答案】(1); (2).【解析】【分析】(1)根据题意得到方程 的两根为,由韦达定理可得到结果;(2)不等式的解集为R,则解出不等式即可.【详解】(1)由已知,且方程 的两根为.有,解得;(2)不等式的解集为R,则,解得,实数的取值范围为.【点睛】这个题目考查了根和系数的关系,涉及到两根关系的题目,多数是可以考虑韦达定理的应用的,也考查到二次函数方程根的个数的问题.19.(1)若是方程的两个根,求的值.(2)已知集合,若中元素至多只有一个,求的取值范围.【答案】(1); (2)或.【解析】【分析】(1)根据韦达定理得到,代入韦达定理得到结果即可;(2)当时满足题意;当0时,方程为二次的,只需要.【详解】(1)由根与系数的关系得: (2)当时,满足题意.当0时,方程至多只有一个解,则,即,综上所述,的取值范围是或.【点睛】这个题目考查了根和系数的关系,涉及到两根关系的题目,多数是可以考虑韦达定理的应用的,也考查到二次函数方程根的个数的问题.20.(1)已知 且 的最大值以及相应的和的值;(2)已知,且求的最小值;(3)已知方程的两个根都是正数,求实数的取值范围。【答案】(1)时最大值为.(2)时取得最小值4.(3)【解析】【分析】(1)根据均值不等式得到结果;(2)=(3)根据韦达定理得到.【详解】(1)已知 且 根据不等式得到: 等号成立的条件为:。(2)已知,且,则= 最小值为4.(3) 已知方程的两个根都是正数,则根据韦达定理得到【点睛】本题考查了“乘1法”与基本不等式的性质,考查了推理能力与计算能力,属于中档题解决二元的范围或者最值问题,常用的方法有:不等式的应用,二元化一元的应用,线性规划的应用,等.21. (本小题满分12分)围建一个面积为360m2的矩形场地,要求矩形场地的一面利用旧墙(利用旧墙需维修),其它三面围墙要新建,在旧墙的对面的新墙上要留一个宽度为2m的进出口,如图所示,已知旧墙的维修费用为45元/m,新墙的造价为180元/m,设利用的旧墙的长度为x(单位:元)。()将y表示为x的函数;()试确定x,使修建此矩形场地围墙的总费用最小,并求出最小总费用。【答案】()y=225x+()当x=24m时,修建围墙的总费用最小,最小总费用是10440元。【解析】试题分析:(1)设矩形的另一边长为am,则根据围建的矩形场地的面积为360m2,易得,此时再根据旧墙的维修费用为45元/m,新墙的造价为180元/m,我们即可得到修建围墙的总费用y表示成x的函数的解析式;(2)根据(1)中所得函数的解析式,利用基本不等式,我们易求出修建此矩形场地围墙的总费用最小值,及相应的x值试题解析:(1)如图,设矩形的另一边长为a m则45x+180(x-2)+1802a=225x+360a-360由已知xa=360,得a=,所以y=225x+(2)当且仅当225x=时,等号成立即当x=24m时,修建围墙的总费用最小,最小总费用是10440元考点:函数模型的选择与应用【此处有视频,请去附件查看】22.函数是定义在上的奇函数,且.(1)确定的解析式;(2)判断并证明在上的单调性;(3)解不等式.【答案】(1),;(2) 是上增函数,证明见解析;(3).【解析】试题分析:(1)若奇函数在x=0处有定义,则f(0)=0,代入即可得b,再由代入即可得
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 幼儿园师徒结对培养计划范本
- 普通磨工节假日前安全考核试卷含答案
- 初中物理期末考点预测试卷
- 必修一秦朝中央集权制度教案
- 炭素材料生产工艺及质量控制
- 2025-2030发酵豆粕营养价值提升技术进展与产能扩张规划评估报告
- 2025-2030反刍动物甲烷减排饲料添加剂政策补贴效益分析报告
- 2025-2030动力锂电池梯次利用技术突破与储能市场发展潜力评估报告
- 2025-2030动力锂电池回收利用技术突破与环保政策导向分析报告
- 2025-2030动力电池硅碳负极粘结剂性能要求与配方优化
- 事业单位医学基础知识名词解释
- 施工现场安全监理危险源清单一览表
- GB/T 233-2000金属材料顶锻试验方法
- FZ/T 74003-2014击剑服
- 颈椎DR摄影技术-
- 功能材料概论-课件
- 一点儿有点儿课件
- 眼视光技术专业技能考核题库-眼镜定配技术模块
- 体育测量与评价-第二章-体育测量与评价的基础理论课件
- 铺轨工程监理规划及工作内容
- 女生青春期生理卫生知识讲座(课堂PPT)
评论
0/150
提交评论