




已阅读5页,还剩38页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
章末复习课,第2章函数,学习目标1.构建知识网络,理解其内在的联系.2.盘点重要技能,提炼操作要点.3.体会数学思想,培养严谨灵活的思维能力.,题型探究,问题导学,内容索引,当堂训练,问题导学,知识点一映射与函数,一般地,设A,B是两个非空集合,如果按某种对应法则f,对于A中的每一个元素,在B中都有唯一的元素与之对应,那么这样的单值对应叫做从集合A到集合B的映射,记作f:AB.由定义可知在A中的任意一个元素在B中都能找到唯一的像,而B中的元素在A中未必有原像.若f:AB是从A到B的映射,且B中任一元素在A中有且只有一个原像,则这样的映射叫做从A到B的一一映射.函数是一个特殊的映射,其特殊点在于A,B都为非空数集,函数有三要素:定义域、值域、对应法则.两个函数只有当定义域和对应法则分别相同时,这两个函数才是同一函数.,知识点二函数的单调性,1.函数的单调性主要涉及求函数的单调区间,利用函数的单调性比较函数值的大小,利用函数的单调性解不等式等相关问题.深刻理解函数单调性的定义是解答此类问题的关键.2.函数单调性的证明根据增函数、减函数的定义分为四个步骤证明,步骤如下:(1)取值:任取x1,x2D,且x10;(2)作差变形:yy2y1f(x2)f(x1),向有利于判断差的符号的方向变形;(3)判断符号:确定y的符号,当符号不确定时,可以进行分类讨论;(4)下结论:根据定义得出结论.,3.证明函数单调性的等价变形:(1)f(x)是单调递增函数任意x10f(x1)f(x2)(x1x2)0;(2)f(x)是单调递减函数任意x1f(x2)x2,x1x20.又x0时,f(x)0,f(x1x2)2即f(x)f(x)2f(x)f(3)f(3x),由(1)知f(x)在R上为单调减函数,f(x)f(3x)x3x,,引申探究证明f(x)为奇函数.若已证明f(x)为奇函数,如何解(3)?,证明,证明令yx,则f(x)f(y)f(x)f(x)f(xx)f(0).再令xy0,有f(0)f(0)f(00),即2f(0)f(0),f(0)0.f(x)f(x)0,即f(x)f(x),f(x)为奇函数,f(x)f(x)22f(x)2f(x)1.,f(x)在R上为单调减函数,,(1)解决有关函数性质的综合应用问题的通法就是根据函数的奇偶性解答或作出图象辅助解答,先证明函数的单调性,再由单调性求最值.(2)研究抽象函数的性质时要紧扣其定义,同时注意特殊值的应用.,反思与感悟,跟踪训练2函数f(x)的定义域为Dx|x0,且满足对于任意x1,x2D,有f(x1x2)f(x1)f(x2).(1)求f(1)的值;,解对于任意x1,x2D,有f(x1x2)f(x1)f(x2),令x1x21,得f(1)2f(1),f(1)0.,解答,(2)判断f(x)的奇偶性并证明你的结论;,解f(x)为偶函数.证明:令x1x21,有f(1)f(1)f(1),,解答,令x11,x2x有f(x)f(1)f(x),f(x)f(x),f(x)为偶函数.,(3)如果f(4)1,f(x1)2,且f(x)在(0,)上是增函数,求x的取值范围.,解依题设有f(44)f(4)f(4)2,由(2)知,f(x)是偶函数,f(x1)2f(|x1|)f(16).又f(x)在(0,)上是增函数.0|x1|16,解之得15x17且x1.x的取值范围是x|15x17且x1.,解答,例3对于函数f(x)x22|x|.(1)判断其奇偶性,并指出图象的对称性;,类型二函数图象的画法及应用,解答,解函数的定义域为R,关于原点对称,f(x)(x)22|x|x22|x|.则f(x)f(x),f(x)是偶函数.图象关于y轴对称.,(2)画此函数的图象,并指出单调区间和最小值.,解答,画出图象如图所示,,根据图象知,函数f(x)的最小值是1,无最大值.单调增区间是1,0,1,);单调减区间是(,1,0,1.,画函数图象的主要方法有描点法和先研究函数性质再根据性质画图,一旦有了函数图象,可以使问题变得直观,但仍要结合代数运算才能获得精确结果.,反思与感悟,跟踪训练3已知f(x)为定义在R上的奇函数,且f(x)f(2x),当x0,1时,f(x)x.求x3,5时,f(x)的所有解的和.,解答,解当x1,0时,x0,1,f(x)x.又f(x)为奇函数,x1,0时,f(x)f(x)x.即x1,1时,f(x)x.又由f(x)f(2x)可得f(x)的图象关于直线x1对称.由此可得f(x)在3,5上的图象如下:,由图可知在3,5上共有四个交点,,从左到右记为x1,x2,x3,x4,则x1与x4,x2与x3关于直线x1对称,,x1x2x3x44.,当堂训练,1.f(x)x2|x|是_函数(填奇、偶),其单调增区间为_.,答案,2,3,4,5,1,0,),偶,2,3,4,5,1,QP,答案,解析,2,3,4,5,1,答案,解析,18,解析f(4)(4)2218,,4.已知f(x),g(x)分别是定义在R上的偶函数和奇函数,且f(x)g(x)x3x21,则f(1)g(1)_.,2,3,4,5,1,1,答案,解析,解析f(1)g(1)f(1)g(1)(1)3(1)211.,答案,解析,2,3,4,5,1,又f(x)在0,)上是单调减函数,,规律与方法,1.函数是高中数学最重要的基础之一,函数的概念及其表示基础性强,渗透面广,常与其他知识结合考查,试题多数为填空题,重点考查函数的定义域与值域的求解以及分段函数的相关问题.2.单调性、奇偶性是函数性质的核心内容,常集于一体综合命题.解题捷径是结合题意选择其中易判断的性质为突破口,而后根据解题需要灵活选择研究和变形方向.,3.(1)函数图象的识别,应抓住函数解析式的特征,从其定义域、值域、单调性、奇偶性等方面灵活判断,多可利用函数图象上点的坐标进行排除.(2)应用函数图象的关键是从图象中提取所需的信息,提取图
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
评论
0/150
提交评论