2020年高中数学 第三章 概率 古典概型解法技巧知识素材 北师大版必修3_第1页
2020年高中数学 第三章 概率 古典概型解法技巧知识素材 北师大版必修3_第2页
2020年高中数学 第三章 概率 古典概型解法技巧知识素材 北师大版必修3_第3页
2020年高中数学 第三章 概率 古典概型解法技巧知识素材 北师大版必修3_第4页
全文预览已结束

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

古典概型解法技巧解决古典概型问题的关键是分清基本事件总数n与事件A中包含的结果数m,而这往往会遇到计算搭配个数的困难.因此,学习中有必要掌握一定的求解技巧.一、直接列举把事件所有发生的结果逐一列举出来,然后再进行求解.例1甲、乙两人参加法律知识竞答,共有10道不同的题目,其中选择题6道,判断题4道,甲、乙两人依次各抽一道(1)甲抽到选择题,乙抽到判断题的概率是多少?(2)甲、乙两人中至少有一人抽到选择题的概率是多少?分析:这是一个古典概型的概率问题,关键是计算出公式中的m,n,然后直接应用公式进行求解解:甲、乙两人从10道题中不放回地各抽一道题,先抽的有10种抽法,后抽的有9种抽法,故所有可能的抽法是10990种,即基本事件总数是90(1)记“甲抽到选择题,乙抽到判断题”为事件A,下面求事件包含的基本事件数甲抽选择题有6种抽法,乙抽判断题有4种抽法,所以事件A的基本事件数为6424(2)先考虑问题的对立面:“甲、乙两人中至少有一人抽到选择题”的对立事件是“甲、乙两人都未抽到选择题”,即都抽到判断题记“甲、乙两人都抽到判断题”为事件B,“至少一人抽到选择题”为事件C,则B所含基本事件数为4312由古典概型概率公式,得,由对立事件的性质可得评注:本题主要考查等可能事件的概率计算、对立事件的概率计算以及分析和解决实际问题的能力例2袋中有6个球,其中4个白球,2个红球,从袋中任意取出两个,求下列事件的概率.(1)取出的两球都是白球;(2)取出的两球一个是白球,另一个是红球.分析:首先直接列举出任取两球的基本事件的总数,然后分别列举求出两个事件分别含有的基本事件数,再利用概率公式求解.解:设4个白球的编号为1,2,3,4,2个红球的编号为5,6.从袋中的6个小球中任取两个的所有可能结果如下:(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6),共15个.(1)从袋中的6个球中任取两个,所取的两球全是白球的方法数,即是从4个白球中任取两个的方法数,共有6个,即为(1,2),(1,3),(1,4),(2,3),(2,4),(3,4).取出的两个球全是白球的概率为:;(2)从袋中的6个球中任取两个,其中一个是红球,而另一个为白球,其取法包括(1,5),(1,6),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6),共8个.取出的两个球一个是白球,另一个是红球的概率为:二、巧用图表由于古典概型问题中基本事件个数有限,故通过图表可以形象,直观地解决这类问题.例3一个口袋内装有大小相等的1个白球和已编有不同号码的3个黑球,从中摸出2个球,求摸出2个黑球的概率.分析:运用集合中的enn图直观分析.解:如图所示,所有结果组成的集合U含有6个元素,故共有6种不同的结果.的子集A有3个元素,故摸出2个黑球有3种不同的结果.因此,摸出2个黑球的概率是:三、逆向思维对于较复杂的古典概型问题,若直接求解有困难时,可利用逆向思维,先求其对立事件的概率,进而再求所求事件的概率.例4同时抛掷两枚骰子,求至少有一个5点或6点的概率.分析:直接求解,运算较繁,而利用对立事件求概率则很简捷.解:至少有一个5点或6点的对立事件是:没有5点或6点.因为没有5点或6点的结果共有16个,而抛掷两枚骰子的结果共有36个,所以没有5点或6点的概率为:至少有一个5点或6点的概率为四、活用对称性例5有A,B,C,D,E共5人站成一排,A在B的右边(A,B可以不相邻)的概率是多少?解析:由于A,B不相邻,A在B的右边和B在A的右边的总数是相等的,且A在B的右边的排法数与B在A的右边的排法数组成所有基本事件总数,所以A在B的右边的概率是五、数形结合法例6如图所示的道路,每一个分叉口都各有2条新的歧路,如果有一只羊进入这个路网,已经走过了10个分叉口,那么从某一条歧路上去找这只羊,找到的可能性有多大?解析:经过1个分叉口,歧路有2条;经过2个分叉口,歧路有条;经过3个分叉口,歧路有条;,经过n个分叉口,歧路有条现在羊已经走过了10个分叉口,羊可以走的歧路有210条,而能找到这只羊的路只有其中1条,故找到这只羊的概率只有六、模拟法例7某人有5把钥匙,其中2把能打开门,现随机地取1把钥匙试着开门,不能开门就扔掉,问第三次才打开门的概率是多大?如果试过的钥匙不扔掉,这个概率又是多少?设计一个试验,随机模拟估计上述概率解:用计算器或计算机产生1到5之间的取整数值的随机数,1、2表示能打开门,3,4,5表示打不开门() 三个一组(每组数字不重复),统计总组

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论