




已阅读5页,还剩17页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1.2.3相似三角形的判定,第1章图形的相似,类似全等三角形的判定,除上述外,还有其他情况吗?继续探索三角形相似的条件。,2,三边对应成比例,思考,是否有ABCABC?,A,B,C,3,实验与探究,在纸上画两个三角形ABC和ABC,使AB=4厘米,AC=6厘米,BC=8厘米,AB=2厘米,AC=3厘米,BC=4厘米.回答下面的问题:,(1)分别计算,这三个比值相等吗?,(2)剪下画出的三角形,利用叠合的方法,检验对应内角之间具有怎样的大小关系?,(3)ABC与ABC相似吗?为什么?,如果改变ABC与DEF的边长,并保持,还能得到同样的结论吗?,4,A,B,C,B=B,ABCABC,AA,ABCABC,三条边对应成比例的两个三角形相似.,验证,5,已知:如图ABC和ABC中AB:AB=AC:AC=BC:BC.求证:ABCABC,证明:在ABC的边AB(或延长线)上截取AD=AB,D,E,过点D作DEBC交AC于点E.,6,已知:如图ABC和中,求证:ABCABC,证明:在ABC的边AB(或延长线)上截取AD=AB,D,E,过点D作DEBC交AC于点E.,又,ADEABC,.,因此.,ABC,ADE,7,判定方法3:如果一个三角形的三条边与另一个三角形的三条边对应成比例,那么这两个三角形相似.简记为:三边对应成比例的两个三角形相似.,符号语言:在ABC与DEF中ABCDEF,8,根据下列条件判断ABC与以D、E、F为顶点的两个三角形是否相似。,(1)AB=3,BC=4,AC=6;DE=6,EF=8,DF=12,(3)AB=3,BC=4,AC=6;DE=6,EF=9,DF=12,(2)AB=3,BC=4,AC=6;DE=6,EF=8,DF=12,ABCDEF,ABC,不相似,EDF,DE=6,EF=12,DF=8,ABCDEF,大胆尝试,练一练!,方法总结:把每个三角形的三边按大小顺序依次排列,然后比较它们对应的比值是否相等,9,例1:如图已知.找出图中相等的角,并说明你的理由.,解:在ABC和ADE中,,ABCADE.,BAC=DAE,B=D,C=E.,BAD=CAE,10,例2、已知:如图,DE,DF,EF是ABC的中位线.求证:ABCFED,证明:,DE,DF,EF是ABC的中位线,DE=BC,DF=AC,EF=AB,ABCFED,11,例3:,如图,某地四个乡镇建有公路,已知AB=14千米,AD=28千米,BD=21千米,BC=42千米,DC=31.5千米,公路AB与CD平行吗?说出你的理由。,14,28,21,42,31.5,解:公路AB与CD平行。,A,B,C,D,ABDBDC,ABD=BDC,ABDC,12,1、根据下列条件,判断ABC与ABC是否相似,并说明理由AB=4cm,BC=6cm,AC=8cm,AB=12cm,BC=18cm,AC=24cm.解:(SSS),巩固练习:,(三边对应成比例,两三角形相似),13,2.如图,已知ABC与DEF中,AB=5,BC=12,AC=8,DE=10,则当DF=_,EF=_时,ABCDEF.,16,24,14,3:如图,在66的正方形方格中,ABC与DEF的顶点都在边长为1的小正方形的顶点上,(1)填空:BC=_,AC=_EF=_,DF=_.,(2)ABC与DEF相似吗?若相似,请给出证明,若不相似,请说明理由.,15,4.APD=90,AP=PB=BC=CD下列结论正确的是()A.PABPCAB.PABPDAC.ABCDBAD.ABCDCA,C,16,5、如图,O为ABC内一点,D、E、F分别是OA、OB、OC中点。求证:ABCDEF,6.如图,,求证:1=2.,17,7、在直角梯形BACD中,ACCD,AC=CD=4AB,E是AC中点.求证:ABECED,18,4:2=5:x=6:y4:x=5:2=6:y4:x=5:y=6:2,8.要作两个形状相同的三角形框架,其中一个三角形的三边的长分别为4、5、6,另一个三角形框架的一边长为2,怎样选料可使这两个三角形相似?这个问题有其他答案吗?,4,5,6,2,19,挑战自我,方格纸中,每个小格的顶点叫做格点,以格点之间的连线为边的三角形叫做格点三角形,如图,ABC和DEC是两个格点三角形。()ABC与DEC相似吗?为什么?()在图中右侧的网格中画一个格点三角形MNP,
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 设备检修安全管理制度
- 设备等级评估管理制度
- 2025年中国家庭影院立体声接收器行业市场全景分析及前景机遇研判报告
- 设计成果运用管理制度
- 评估公司价格管理制度
- 诊所医疗软件管理制度
- 诊所财务制度管理制度
- 贝壳门店分级管理制度
- 财务集中中心管理制度
- 账务实物分开管理制度
- 风险评估分析表
- 造林(乔木林、灌木林、经济林)单元工程质量评定表(2023版)
- 部编2023版道德与法治六年级下册活动园问题及答案
- 【课程思政优秀案例】《化工环保与安全》:筑牢安全红线守望绿水青山
- 墙板安装应急救援预案方案
- 2023春国开个人与团队管理1-32章自测试题及答案
- 2023春国开经济法律基础形考任务1-4试题及答案
- 80m3液化石油储罐结构设计及焊接工艺设计
- 2023-2024学年四川省凉山州小学数学五年级下册期末自测试卷
- 十小咒注音版
- 2023年麻阳苗族自治县事业单位招聘笔试模拟试题及答案解析
评论
0/150
提交评论