




已阅读5页,还剩1页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
直线、平面平行的性质【学习目标】1.掌握直线与平面平行的性质定理及其应用;2.掌握两个平面平行的性质定理及其应用;3能综合运用直线与平面、平面与平面平行的判定与性质定理解决相关问题【要点梳理】【高清课堂:线面平行的判定与性质 399459知识讲解2】要点一、直线和平面平行的性质文字语言:一条直线与一个平面平行,则过这条直线的任一平面与此平面的交线与该直线平行.简记为:线面平行则线线平行.符号语言:若,则.图形语言:要点诠释:直线和平面平行的性质定理可简述为“若线面平行,则线线平行”可以用符号表示:若a,则ab这个性质定理可以看作直线与直线平行的判定定理,用该定理判断直线a与b平行时,必须具备三个条件:(1)直线a和平面平行,即a;(2)平面和相交,即;(3)直线a在平面内,即三个条件缺一不可,在应用这个定理时,要防止出现“一条直线平行于一个平面,就平行于这个平面内一切直线”的错误【高清课堂:空间面面平行的判定与性质399113知识讲解】要点二、平面和平面平行的性质文字语言:如果两个平行平面同时与第三个平面相交,那么它们的交线平行.符号语言:若,则.图形语言:要点诠释:(1)面面平行的性质定理也是线线平行的判定定理(2)已知两个平面平行,虽然一个平面内的任何直线都平行于另一个平面,但是这两个平面内的所有直线并不一定相互平行,它们可能是平行直线,也可能是异面直线,但不可能是相交直线(否则将导致这两个平面有公共点)要点三、平行关系的综合转化空间中的平行关系有线线平行、线面平行、面面平行这三种关系不是孤立的,而是互相联系的它们之间的转化关系如下:证明平行关系的综合问题需灵活运用三种平行关系的定义、判定定理、性质定理有关线面、面面平行的判定与性质,可按下面的口诀去记忆:空间之中两直线,平行相交和异面线线平行同方向,等角定理进空间判断线和面平行,面中找条平行线;已知线和面平行,过线作面找交线要证面和面平行,面中找出两交线线面平行若成立,面面平行不用看已知面与面平行,线面平行是必然若与三面都相交,则得两条平行线 【经典例题】类型一:直线与平面平行的性质例1四边形ABCD是平行四边形,点P是平面ABCD外一点,M是PC的中点,在DM上取一点G,过G和AP作平面交平面BDM于GH求证:APGH【解析】如图,连接AC交BD于O,连接MO,四边形ABCD是平行四边形,O是AC的中点,又M是PC的中点,APOM根据直线和平面平行的判定定理,则有PA平面BMD平面PAHG平面BDM=GH,根据直线和平面平行的性质定理,PAGH【总结升华】利用线面平行的性质定理解题的步骤:(1)确定(或寻找)一条直线平行于一个平面;(2)确定(或寻找)过这条直线且与这个平面相交的平面;(3)确定交线;(4)由定理得出结论举一反三:【变式1】(2016 江苏无锡模拟)如图,平面PAC平面ABC,ACBC,PECB,M是AE的中点若MN平面ABC,求证:N是PA的中点【答案】详见证明【证明】MN平面ABC,PECB,MNPE,M是AE的中点,N是PA的中点例2如图所示,已知异面直线AB、CD都平行于平面,且AB、CD在的两侧,若AC、BD与分别交于M、N两点,求证:【解析】如图所示,连接AD交平面于Q,连接MQ、NQMQ、NQ分别是平面ACD、平面ABD与的交线CD,AB,CDMQ,ABNQ于是,【总结升华】利用线面平行的性质定理,可以把有的立体问题转化为平面内的平行问题,利用平行线截割定理,可以解决有关线段成比例或三角形的面积比等问题在应用线面平行的性质定理时,应着力寻找过已知直线的平面与已知平面的交线,有时为了得到交线还需作出辅助平面,本例通过连接AD作出平面ACD与平面ABD,得到交线MQ和NQ举一反三:【高清课堂:线面平行的判定与性质 399459例3】【变式1】已知直线平面,直线平面,平面平面=,求证证明:经过作两个平面和,与平面和分别相交于直线和,平面,平面,又平面,平面,平面,又平面,平面平面=,又,【变式2】如图所示,在三棱锥PABC中,PA=4,BC=6,与PA、BC都平行的截面四边形EFGH的周长为,试确定的取值范围【解析】与PA、BC平行的截面四边形EFGH应有二边平行于PA,另二边平行于BC,故它是一个平行四边形,同理,四边形EFGH的周长=2(EF+FG)=+=8+4因为0PF/PB1,截面四边形EFGH的周长l应大于小于12,8l12.类型二:平面与平面平行的性质例3已知:平面平面平面,两条直线,m分别与平面,相交于点A,B,C和点D,E,F(如图)求证:【解析】连接DC,设DC与平面相交于点G,连接BG、EG,则平面ACD与平面、分别相交于直线AD、BD,平面DCF与平面、分别相交于直线GE、CF因为,所以BGAD,GECF于是,得,所以【总结升华】利用面面平行的性质定理判定两线平行的程序是:(1)先找两个平面,使这两个平面分别经过这两线中的一条;(2)判定这两个平面平行;(3)再找一个平面,使这两条直线都在这个平面内;(4)由定理得出结论举一反三:【变式1】 已知面平面,点A,C,点B,D,直线AB,CD交于点S,且SA=8,SB=9,CD=34(1)若点S在平面,之间,则SC=_;(2)若点S不在平面,之间,则SC=_【答案】(1)16 (2)272例4如图所示,平面平面,A,C,D,点E,F分别在线段AB,CD上,且求证:EF【解析】(1)当AB,CD共面时,且平面ABDC=AC,平面ACDB=BD,ACBD,四边形ABDC是梯形或平行四边形由,得EFBD,又BD,EF,EF(2)当AB,CD异面时,作AHCD交于H,且平面AHDC与平面,的交线分别为AC,HD,ACHD四边形AHDC为平行四边形作FGDH交AH于G,连接EG,于是,从而EGBH,而BH,EG,EG又FGDH,DH,FG,FGEGFG=G,平面EFG又EF平面EFG,EF【总结升华】(1)面面平行的性质定理的应用问题,往往涉及面面平行的判定、线面平行的判定与性质的综合运用解题时,要准确地找到解题的切入点,灵活地运用相关定理来解决问题如在本例的第二种情况:面面平行线线平行平行四边形线面平行面面平行线面平行(2)由面面平行的定义可知,一个面内任意一条直线与另一个平行平面都没有交点,因而有面面平行的一个重要性质:两个平行平面中的一个平面内任意一条直线必平行另一个平面,如本例(2)中由平面EFG得出EF,便是这一性质的灵活运用举一反三:【变式1】(2015年 上海普陀区二模)在正方体ABCDA1B1C1D1中,E是棱DD1的中点在棱C1D1上是否存在一点F,使得BF1平面A1BE,若存在,指明点F的位置,若不存在,请说明理由【思路点拨】在棱C1D1上存在点F,使B1F平面A1BE,分别取C1D1和CD的中点F,G,连接EG,BG,CD1,FG,因A1D1B1C1BC,且A1D1=BC,所以四边形A1BCD1为平行四边形,根据中位线定理可知EGA1B,从而说明A1,B,G,E共面,则BG面A1BE,根据FGC1CB1G,且FG=C1C=B1B,从而得到四边形B1BGF为平行四边形,则B1FBG,而B1F平面A1BE,BG平面A1BE,根据线面平行的判定定理可知B1F平面A1BE【答案】详见证明【证明】在棱C1D1上存在点F,使B1F平面A1BE,事实上,如图所示,分别取C1D1和CD的中点F,G,连接EG,BG,CD1,FG,因A1D1B1C1BC,且A1D1=BC,所以四边形A1BCD1为平行四边形,因此D1CA1B,又E,G分别为D1D,CD的中点,所以EGD1C,从而EGA1B,这说明A1,B,G,E共面,所以BG平面A1BE因四边形C1CDD1与B1BCC1皆为正方形,F,G分别为C1D1和CD的中点,所以FGC1CB1B,且FG=C1C=B1B,因此四边形B1BGF为平行四边形,所以B1FBG,而B1F平面A1BE,BG平面A1BE,故B1F平面A1BE类型三:线面平行的判定与性质的综合应用例5已知正四棱柱ABCDA1B1C1D1中,M是DD1的中点 求证:BD1平面AMC【思路点拨】连结BD交AC于N,连结MN由此利用三角形中位线定理能证明BD1平面AMC【答案】详见解析【证明】在正四棱柱ABCDA1B1C1D1中,连结BD交AC于N,连结MN因为ABCD为正方形,所以N为BD中点在DBD1中,因为M为DD1中点,所以BD1MN因为MN平面AMC,BD1不包含于平面AMC,所以BD1平面AMC举一反三:【变式1】如图所示,已知点P是ABCD所在平面外一点,M、N分别是AB、PC的中点,平面PBC平面APD=(1)求证:BC;(2)MN与平面PAD是否平行?试证明你的结论【解析】方法一:(1)因为BCAD,BC平面PAD,AD平面PAD,所以BC平面PAD又因为平面PBC平面PAD=,所以BC(2)平行如下图(1),取PD的中点E,连接AE,NE,可
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 六一活动糖葫芦活动方案
- 六一活动西餐厅活动方案
- 六一灯光活动策划方案
- 六一玩转蔬果活动方案
- 六一衣服活动方案
- 六反六查三确保活动方案
- 药品食品考试试题及答案
- 药品考试试题及答案解析
- 药二考试试题及答案分析
- 兰坪税务局活动方案
- 血管内导管相关性血流感染预防与诊治2025
- 2025年安庆宿松县县属国有企业招聘57人笔试参考题库附带答案详解析集合
- 部编人教版一年级下册道德与法治复习计划
- 新基建浪潮下临沂市智慧交通管理的创新与突破
- 临时用电施工方案技术交底
- 厂房维修合同协议书模板
- 2025年Z世代消费行为与品牌社群营销研究报告
- 2025年春季《中华民族共同体概论》第二次平时作业-国开(XJ)-参考资料
- 《流行性感冒辨证论治》课件
- JJG(交通) 208-2024 车货外廓尺寸动态现场检测设备
- 工厂精细化管理全案
评论
0/150
提交评论