《计量经济学英》PPT课件_第1页
《计量经济学英》PPT课件_第2页
《计量经济学英》PPT课件_第3页
《计量经济学英》PPT课件_第4页
《计量经济学英》PPT课件_第5页
已阅读5页,还剩29页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1,MultipleRegressionAnalysis,y=b0+b1x1+b2x2+.bkxk+u2.Inference,2,AssumptionsoftheClassicalLinearModel(CLM),Sofar,weknowthatgiventheGauss-Markovassumptions,OLSisBLUE,Inordertodoclassicalhypothesistesting,weneedtoaddanotherassumption(beyondtheGauss-Markovassumptions)Assumethatuisindependentofx1,x2,xkanduisnormallydistributedwithzeromeanandvariances2:uNormal(0,s2),3,CLMAssumptions(cont),UnderCLM,OLSisnotonlyBLUE,butistheminimumvarianceunbiasedestimatorWecansummarizethepopulationassumptionsofCLMasfollowsy|xNormal(b0+b1x1+bkxk,s2)Whilefornowwejustassumenormality,clearthatsometimesnotthecaseLargesampleswillletusdropnormality,4,.,.,x1,x2,Thehomoskedasticnormaldistributionwithasingleexplanatoryvariable,E(y|x)=b0+b1x,y,f(y|x),Normaldistributions,5,NormalSamplingDistributions,6,ThetTest,7,ThetTest(cont),KnowingthesamplingdistributionforthestandardizedestimatorallowsustocarryouthypothesistestsStartwithanullhypothesisForexample,H0:bj=0Ifacceptnull,thenacceptthatxjhasnoeffectony,controllingforotherxs,8,ThetTest(cont),9,tTest:One-SidedAlternatives,Besidesournull,H0,weneedanalternativehypothesis,H1,andasignificancelevelH1maybeone-sided,ortwo-sidedH1:bj0andH1:bj0,c,0,a,(1-a),One-SidedAlternatives(cont),Failtoreject,reject,12,One-sidedvsTwo-sided,Becausethetdistributionissymmetric,testingH1:bjthancthenwefailtorejectthenullForatwo-sidedtest,wesetthecriticalvaluebasedona/2andrejectH1:bj0iftheabsolutevalueofthetstatisticc,13,yi=b0+b1Xi1+bkXik+uiH0:bj=0H1:bj0,c,0,a/2,(1-a),-c,a/2,Two-SidedAlternatives,reject,reject,failtoreject,14,SummaryforH0:bj=0,Unlessotherwisestated,thealternativeisassumedtobetwo-sidedIfwerejectthenull,wetypicallysay“xjisstatisticallysignificantatthea%level”Ifwefailtorejectthenull,wetypicallysay“xjisstatisticallyinsignificantatthea%level”,15,Testingotherhypotheses,AmoregeneralformofthetstatisticrecognizesthatwemaywanttotestsomethinglikeH0:bj=ajInthiscase,theappropriatetstatisticis,16,ConfidenceIntervals,Anotherwaytouseclassicalstatisticaltestingistoconstructaconfidenceintervalusingthesamecriticalvalueaswasusedforatwo-sidedtestA(1-a)%confidenceintervalisdefinedas,17,Computingp-valuesforttests,Analternativetotheclassicalapproachistoask,“whatisthesmallestsignificancelevelatwhichthenullwouldberejected?”So,computethetstatistic,andthenlookupwhatpercentileitisintheappropriatetdistributionthisisthep-valuep-valueistheprobabilitywewouldobservethetstatisticwedid,ifthenullweretrue,18,Stataandp-values,ttests,etc.,Mostcomputerpackageswillcomputethep-valueforyou,assumingatwo-sidedtestIfyoureallywantaone-sidedalternative,justdividethetwo-sidedp-valueby2Stataprovidesthetstatistic,p-value,and95%confidenceintervalforH0:bj=0foryou,incolumnslabeled“t”,“P|t|”and“95%Conf.Interval”,respectively,19,TestingaLinearCombination,Supposeinsteadoftestingwhetherb1isequaltoaconstant,youwanttotestifitisequaltoanotherparameter,thatisH0:b1=b2Usesamebasicprocedureforformingatstatistic,20,TestingLinearCombo(cont),21,TestingaLinearCombo(cont),So,touseformula,needs12,whichstandardoutputdoesnothaveManypackageswillhaveanoptiontogetit,orwilljustperformthetestforyouInStata,afterregyx1x2xkyouwouldtypetestx1=x2togetap-valueforthetestMoregenerally,youcanalwaysrestatetheproblemtogetthetestyouwant,22,Example:,SupposeyouareinterestedintheeffectofcampaignexpendituresonoutcomesModelisvoteA=b0+b1log(expendA)+b2log(expendB)+b3prtystrA+uH0:b1=-b2,orH0:q1=b1+b2=0b1=q1b2,sosubstituteinandrearrangevoteA=b0+q1log(expendA)+b2log(expendB-expendA)+b3prtystrA+u,23,Example(cont):,Thisisthesamemodelasoriginally,butnowyougetastandarderrorforb1b2=q1directlyfromthebasicregressionAnylinearcombinationofparameterscouldbetestedinasimilarmannerOtherexamplesofhypothesesaboutasinglelinearcombinationofparameters:b1=1+b2;b1=5b2;b1=-1/2b2;etc,24,MultipleLinearRestrictions,Everythingwevedonesofarhasinvolvedtestingasinglelinearrestriction,(e.g.b1=0orb1=b2)However,wemaywanttojointlytestmultiplehypothesesaboutourparametersAtypicalexampleistesting“exclusionrestrictions”wewanttoknowifagroupofparametersareallequaltozero,25,TestingExclusionRestrictions,NowthenullhypothesismightbesomethinglikeH0:bk-q+1=0,.,bk=0ThealternativeisjustH1:H0isnottrueCantjustcheckeachtstatisticseparately,becausewewanttoknowiftheqparametersarejointlysignificantatagivenlevelitispossiblefornonetobeindividuallysignificantatthatlevel,26,ExclusionRestrictions(cont),Todothetestweneedtoestimatethe“restrictedmodel”withoutxk-q+1,xkincluded,aswellasthe“unrestrictedmodel”withallxsincludedIntuitively,wewanttoknowifthechangeinSSRisbigenoughtowarrantinclusionofxk-q+1,xk,27,TheFstatistic,TheFstatisticisalwayspositive,sincetheSSRfromtherestrictedmodelcantbelessthantheSSRfromtheunrestrictedEssentiallytheFstatisticismeasuringtherelativeincreaseinSSRwhenmovingfromtheunrestrictedtorestrictedmodelq=numberofrestrictions,ordfrdfurnk1=dfur,28,TheFstatistic(cont),TodecideiftheincreaseinSSRwhenwemovetoarestrictedmodelis“bigenough”torejecttheexclusions,weneedtoknowaboutthesamplingdistributionofourFstatNotsurprisingly,FFq,n-k-1,whereqisreferredtoasthenumeratordegreesoffreedomandnk1asthedenominatordegreesoffreedom,29,0,c,a,(1-a),f(F),F,TheFstatistic(cont),reject,failtoreject,RejectH0atasignificancelevelifFc,30,TheR2formoftheFstatistic,BecausetheSSRsmaybelargeandunwieldy,analternativeformoftheformulaisusefulWeusethefactthatSSR=SST(1R2)foranyregression,socansubstituteinforSSRuandSSRur,31,OverallSignificance,AspecialcaseofexclusionrestrictionsistotestH0:b1=b2=bk=0SincetheR2fromamodelwithonlyaninterceptwillbezero,theFstatisticissimply,32,GeneralLinearRestrictions,ThebasicformoftheFstatisticwillworkforanysetoflinearrestrictionsFirstestimatetheunrestrictedmodelandthenestimatetherestrictedmode

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论