全文预览已结束
下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1.1.4余弦定理的应用(一)教学目标运用余弦定理解决解三角形问题。(二)教学重、难点重点:余弦定理的基本应用;难点:利用勾股定理证明余弦定理。(三)教学过程提出问题:1、如何利用勾股定理证明余弦定理?2、正弦定理、余弦定理体现了三角形中的边角的什么关系?3、总结利用正余弦定理解三角形的类型。课堂讨论:得出结论:1、 正余弦定理从分体现了三角形中边角的互化,利用三角恒等式变换解三角形。2、 解三角形常见类型:基本类型一般解法已知两角及其中一边。如:A,B,a.1、由,求出C.2、根据正弦定理求出,b、c.已知两边和它们的夹角,如:a,b,C.1、根据余弦定理求出c.2、根据求出A.3、由,求出B.已知三边利用余弦定理先求出两角,再由,求出第三个角。已知两边及其中一边的对角。如:a,b,A.1、 利用正弦定理求角B。(注意两解)2、由,求出角C.3、再由正弦或余弦定理求出边c.例题讲解:例1、在ABC中,设角A,B,C的对边分别为a.b,c。且,若且,求边b,c的值。例2、在ABC中, 。(I)求sinA的值; (II)设AC=,求ABC的面积。例3、在中,内角A、b、c的对边长分别为a、b、c.已知,且,求b.解三角形的习题课例1、的面积是30,内角所对边长分别为,。()求;()若,求的值。例2、在中,分别为内角的对边,且()求的大小;()若,试判断的形状.例3、中,为边上的一点,求例4、已知的内角,及其对边,满足,求内角例5、在ABC中,已知B=45,D是BC边上的一点,AD=10,AC=14,DC=6,求AB的长.例6、在ABC中,。()证明B=C;()若=-,求sin的值。例7、在ABC中,角A,B,C所对的边分别
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 云南省曲靖市宣武九中2026届高一数学第一学期期末学业水平测试试题含解析
- 上海市静安区风华中学2026届生物高二上期末复习检测模拟试题含解析
- 上海市复旦大学附中浦东分校2025-2026学年生物高二上期末教学质量检测模拟试题含解析
- 四川博睿特外国语学校2025年化学高一上期中达标检测模拟试题含解析
- 长江大学《空间分析与应用》2024-2025学年第一学期期末试卷
- 上海市徐汇区上海中学、复旦附中等八校2025-2026学年化学高一第一学期期中监测试题含解析
- 山东省聊城市高唐一中2026届高二上物理期末综合测试模拟试题含解析
- 体育测评面试技巧指导岗位选择与面试准备
- 工程回购意向协议书
- 废弃油处理合同范本
- 劲嘉集团SAP项目-业务现状及需求调研报告-FICO-V1.2(中丰田)-20180625
- 文物保护工程资料管理规程
- 迪庆藏族自治州发电有限责任公司新乐水电站环境影响后评价报告书
- 2023年KDIGO指南膜性肾病部分(中文翻译版)
- 【格力电器公司税收筹划方案设计(5000字论文)】
- 唐山出入境边防检查站诚信管理服务双向
- 2022年05月上半年国家药品监督管理局医疗器械技术审评检查大湾区分中心公开招聘6人42考试参考题库答案详解
- 2019年春季马克思主义基本原理概论课程社会实践报告大学生应该如何看待及应对人工智能的发展
- 锁紧回路的连接与调试
- 风电场设备材料设备清单
- 垂体瘤的围手术期护理
评论
0/150
提交评论