




已阅读5页,还剩30页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
三边对应相等的两个三角形全等(可以简写为“边边边”或“SSS”).,在ABC和DEF中,ABCDEF(SSS),用符号语言表达为:,三角形全等判定方法1,复习回顾,1,除了SSS外,还有其他情况吗?继续探索三角形全等的条件.,思考,(2)三条边,(1)三个角,(3)两边一角,(4)两角一边,当两个三角形满足六个条件中的三个时,有四种情况:,SSS,不能!,?,2,探讨三角形全等的条件:,两边一角,思考:已知一个三角形的两边和一角,那么这两条边与这一个角的位置上有几种可能性呢?,A,B,C,在图中,A,是AB和AC的夹角,,符合图中的条件,称为“两边及其夹角”,探究,3,探讨三角形全等的条件:,两边一角,思考:已知一个三角形的两边和一角,那么这两条边与这一个角的位置上有几种可能性呢?,A,B,C,图二,在图中,B是边AC的对角,探究,C是边AB的对角,符合图中的条件,常说成“两边和其中一边的对角”,4,两边及其夹角,先任意画出一个ABC,再画一个ABC,使AB=AB,AC=AC,A=A,把画好的ABC,放到ABC上,它们能全等吗?,探究,5,结论:两边及夹角对应相等的两个三角形全等,?,思考:ABC与ABC全等吗?,画法:1.画DAE=A;,2.在射线AD上截取AB=AB,在射线AE上截取AC=AC;,3.连接BC.,A,C,B,A,E,C,D,这两个三角形全等是满足哪三个条件?,B,6,三角形全等判定方法2,用符号语言表达为:,在ABC与ABC中,ABCABC(SAS),两边和它们的夹角对应相等的两个三角形全等。(可以简写成“边角边”或“SAS”),C,B,A,C,B,A,7,探索边边角,SSA不存在,显然:ABC与ABC不全等,探究,8,A,B,D,A,B,C,SSA不能判定全等,9,两边及一角对应相等的两个三角形全等吗?,两边及夹角对应相等的两个三角形全等(SAS);,两边及其中一边的的对角对应相等的两个三角形不一定全等,现在你知道哪些三角形全等的判定方法?,SSS,SAS,SSA不成立,10,如图,有一池塘,要测池塘两端A、B的距离,可在平地上取一个可直接到达A和B的点C,连结AC并延长至D使CD=CA,连结BC并延长至E使CE=CB,连结ED,那么量出DE的长,就是A、B的距离,为什么?,B,A,D,E,证明:在ABC和DEC中,,AC=DC(已知),ACB=DCE(对顶角相等),BC=EC(已知),ABCDEC(SAS),AB=DE,(全等三角形的对应边相等),分析:已知两边(相等),找第三边(SSS),找夹角(SAS),解决问题,11,如图,已知AC、BD互相平分交于点O,求证:AOBCOD,学以致用,12,A,B,C,D,E,学以致用,如图AB=AD,AC=AE,BAD=CAE,求证:BC=DE,13,如图:如果AB=AC,BAD=CAD求证:ABDACD,A,B,C,D,学以致用,14,1、今天我们学习哪种方法判定两三角形全等?,边角边(SAS),2、通过这节课,判定三角形全等的条件有哪些?,SSS、SAS、,注意哦!,“边边角”不能判定两个三角形全等,15,1.学习了三角形全等的又一个判定公理:边角边公理,到目前为止,我们已经学习了三种判定三角形全等的方法(一个定义,两个公理).2.证明两个三角形全等时若缺条件:找图形的隐含条件;根据其它已知条件推出所缺条件.3.添加适当的辅助线将四边形问题转化为三角形问题.,16,数学首要是聚精会神的思考!,17,D,A,B,C,如图,AB=CB,ABD=CBD,ABD和CBD全等吗?,学以致用,18,如图,点E,F在BC上,BE=CF,AB=DC,B=C求证:A=D,学以致用,19,如图,AC=BD,CAB=DBA,你能判断BC=AD吗?说明理由。,证明:在ABC与BAD中,AC=BDCAB=DBAAB=BA,ABCBAD(SAS),(已知),(已知),(公共边),BC=AD(全等三角形的对应边相等),学以致用,20,如图ADBC,AE=CF,AD=BC,E、F都在直线AC上,试说明DEBF,学以致用,21,已知:如图,AB=CB,ABD=CBD,问AD=CD,BD平分ADC吗?,D,A,B,C,学以致用,22,已知:AD=CD,BD平分ADC,问A=C吗?,学以致用,23,学以致用,如图EAAD于A,FDAD于D,且AE=DF,AB=DC.求证:CE=BF.,24,已知:如图OP平分MON,OM=ON,MD=ND.求证:OMPONP;PMDPND;PMD=PND.,学以致用,25,已知:如图,ACBD,C为垂足,AC=DC,CB=CE.求证:DFAB.,学以致用,A,B,E,F,C,D,26,如图,AB=AC,AE=AD,1=2,求证:BD=CE.,学以致用,27,D,A,C,B,E,点C是线段AB的中点,CE=CD,ACD=BCE,求证:AE=BD,学以致用,28,如图,ABAC,ADAE,AB=AC,AD=AE.求证:DACEAB,E,A,D,C,B,学以致用,29,如图等边AEB与等边BCD在线段AC的同侧。求证:ABDEBC,A,B,C,E,D,学以致用,30,如图,ABC与DCE都是等边三角形,点D在BC上,AD与BE相等吗?试说明理由。,学以致用,31,如图,ABC与DCE都是等边三角形,点D在ABC内,AD与BE相等吗?试说明理由。,学以致用,32,如图,ABC与DCE都是等边三角形,点D.
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 城市配送公司兼职货运司机服务协议
- 《变迁:家乡的足迹》课件-(获奖课件)
- 医学临床试验质量控制合作协议
- 网络游戏IP改编影视作品版权授权合同
- 数据中心绿色环保建设与节能改造合同
- 企业生产安全培训课件
- 《医疗人文关怀》课件
- 《内分泌系统》课件
- 《慢性疼痛与管理》课件
- 《医疗急救知识》课件
- 2024年水力发电运行值班员(技师)技能鉴定考试题库-下(多选、判断题)
- 2024年新版科普版三年级英语上册英语单词带音标
- GB/Z 44314-2024生物技术生物样本保藏动物生物样本保藏要求
- 人工智能赋能语文教育的创新发展研究
- 单片机原理及应用智慧树知到期末考试答案章节答案2024年温州医科大学
- 中华中医药学会强直性脊柱炎脾虚湿阻证证候诊断标准(公示稿)
- 2024助贷委托服务协议合同模板
- “五育”与小学数学教育的融合
- 阿替普酶在心脑血管疾病中的应用
- ISO27001:2022信息安全管理手册+全套程序文件+表单
- 《电力建设施工企业安全生产标准化实施规范》
评论
0/150
提交评论