




已阅读5页,还剩24页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
CoherentClassicalCommunication,Aram Harrow (MIT)quant-ph/0307091,Outline,What is coherent classical communication (CCC)?Where does CCC come from?What is CCC good for? Remote state preparation with CCCNoisy CCC and applications,beyond qubits and cbits,Let |xix=0,1 be a basis for C2.q!q: |xiA!|xiB (qubit)c!c: |xiA!|xiB|xiE (cbit)qq: |Fi=2-1/2x|xiA|xiB (ebit)cc: 2-1/2x|xiA|xiB|xiE (rbit)c!c: |xiA!|xiA|xiB (coherent cbit)(notation due to Devetak and Winter, quant-ph/0304196),simple resource relations,Trivial relations:q!q c!c c!c ccq!q c!c qq ccTeleportation (TP):2c!c + qq q!qSuper-dense coding (SDC):q!q + qq 2c!c (coherent output!),distributed unitary gates,Theorem:If U is a unitary gate on HAHB such that U + e qq C!c!c + Ccc (A)then U + e qq C!c!c + Ccc (A).Examples:CNOTAB|xiA|0iB=|xiA|xiB(HZaI)CNOTAB(XaZb)2-1/2x|xiA|xiB=|biA|aiBNote:1. The proof requires careful accounting of ancillas.2. It also holds for isometries (e.g. |xiA!|xiA|xiB),Teleportation,H,X,Z,2 c!c + 1 qq 1 q!q,Before measuring, the state is 2-1ab|ai|biAZaXb|yiB.,Teleportation with coherent communication,H,X,Z,2 c!c + 1 qq 1 q!q+ 2 qq,coherentclassicalcomm.,the power of coherent cbits,Teleportation with recycling:2 c!c + 1 qq 1 q!q+ 2 qq2 c!c 1 q!q+ 1 qq (C)Super-dense coding:1 q!q+ 1 qq 2 c!c (C)Therefore:2 c!c = 1 q!q+ 1 qq (C)Teleportation and super-dense coding are no longer irreversible.,Recycling in the remote CNOT,H,=,c!c + cc + qq CNOT Gottesman, quant-ph/9807006c!c + cc + qq CNOT + 2 qqc!c + cc CNOT + qq (C),the power of a CNOT,Making a remote CNOT coherent:c!c + cc CNOT + qq (C)Using a CNOT for bidirectional communication:(HZaI)CNOTAB(XaZb)2-1/2x|xiA|xiB=|biA|aiBCNOT + qq c!c + ccCombined: CNOT + qq = c!c + cc (C)2 CNOT = 2 c!c + 2 cc 2 qq = q!q + qq = SWAP (C),Remote State Preparation,1 cbit + 1 ebit 1 remote qubitGiven |Fdi and a description of y2Cd, Alice can prepare y in Bobs lab with error e by sending him log d + O(log (log d)/e2) bits.Bennett, Hayden, Leung, Shor and Winter, quant-ph/0307100,definitions of remote qubits,What does it mean for Alice to send Bob n remote qubits?She can remotely prepare one of,RSP lemma,For any d and any e0, there exists n=O(d log d/e2) and a set of d x d unitary gates R1,Rn such that for any y,Use this to define a POVM:,RSP protocol,k,Neumarks theorem:any measurement can be made unitary,k,Entanglement recycling in RSP,UA,discard,coherentclassicalcommunicationof log n bits,Implications of recycled RSP,1 coherent cbit 1 remote qubit (with catalysis),Corollary 1: The remote state capacity of a unitary gate equals its classical capacity.Corollary 2: Super-dense coding of quantum states (SDCQS)1 qubit + 1 ebit 2 remote qubits (with catalysis)(Note: Harrow, Hayden, Leung; quant-ph/0307221 have a direct proof of SDCQS.),RSP of entangled states (eRSP),Let E=pi,yi be an ensemble of bipartite pure states. Define S(E)=S(ipiTrAyi), E(E)=ipiS(TrAyi), c(E)=S(E)-E(E).eRSP: c(E) c!c + S(E) qq E (A) BHLSWmake it coherent: c(E) c!c + E(E) qq E (A)use super-dense coding: c(E)/2 q!q + (E(E)+ c(E)/2) qq E (A),Unitary gate capacities,Define Ce to be the forward classical capacity of U assisted by e ebits of entanglement per use, so that1 use of U + e qq Ce c!c (A),(In BHLS; quant-ph/0205057, this was proved for e=1.),Solution:Ce=supE c(UE) - c(E) : E(E) - E(UE)6e,Warmup: entanglement capacity,Define E(U) to be the largest number satisfyingU E(U) qq (A).Claim: E(U) = sup|yi E(U|yi) E(|yi)Proof: BHLS; quant-ph/0205057 |yi + U U|yi E(U|yi) qq (concentration)|yi + E(U|yi)-E(|yi) qq (dilution)Thus: U E(U|yi)-E(|yi) qq (A),Coherent HSW coding,Lemma: Let E=pi,yi be an ensemble of bipartite pure states that Alice can prepare in superposition. ThenE c(E) c!c + E(E) qq (A)Proof: Choose a good code on En. Bobs measurement obtains nc(E) bits of Alices message and determines the codeword with high probability, causing little disturbance. Thus, this measurement can be made coherent. Since Alice and Bob know the codeword, they can then do entanglement concentration to get nE(E) ebits.,Protocol achieving Ce,E + U UE c(UE) c!c + E(UE) qq(coherent HSW) E + (c(UE)-c(E) c!c + (E(UE)-E(E) qq (coherent RSP)Thus, U + (E(E)-E(UE) qq (c(UE)-c(E) c!c (A),Quantum capacities of unitary gates,Define Qe(U) to be the largest number satisfyingU + e qq Qe q!q.Using 2c!c = 1q!q + 1qq, we find,Summary,2 coherent cbits = 1 qubit + 1 ebit2 CNOT = SWAP (catalysis)1 qubit + 1 ebit 2 remote qubits (catalysis)eSDCQS using c/2 qubits and S-c/2 ebits.Single-letter expressions for Ce and Qe.Remote state capacities and classical capacities are equal for unitary gates.,Noisy CCCDevetak, Harrow, Winter; quant-ph/0308044,Two minute proofs of the hashing inequality and the quantum channel capacity.Generalizations of these protocols to obtain the full trade-off curves for quantum channels assisted by a limited amount of entanglement and entanglement distillation with a limited amount of communication.,Noisy CCC: definitions,Let rAB be a bipartite state and |yiABE its purification.I(A:B) = H(A) + H(B) H(E)I(A:E) = H(A) + H(E) H(B)Ic = H(B) H(E) = (I(A:B) I(A:E)If N is a noisy channel, then evaluate the above quantities on (IN)|Fri, where |Fri is a purification of Alices input r.qq = one copy of rABq!q = one use of N,Noisy CCC: applications,Old results:S(A) qq + q!q I(A:B) c!c BSST; q-ph/0106052q!q Ic q!q Shor; unpublishedS(A) q!q + qq I(A:B) c!c HHHLT; q-ph/0106080I(A:E) c!c + qq Ic qq DW; q-ph/0306078New results:I(A:E)/2 qq + q!q I(A:B)/2 q!qfatherI(A:E)/2 q!q + qq I(A:B)/2 qqmother,A family of quantum protocols,fa
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025年事业单位工勤技能-广西-广西水利机械运行维护工二级(技师)历年参考题库典型考点含答案解析
- 2025年事业单位工勤技能-广西-广西工程测量员一级(高级技师)历年参考题库典型考点含答案解析
- 2025年事业单位工勤技能-广东-广东计算机操作员二级(技师)历年参考题库含答案解析
- 2025年事业单位工勤技能-广东-广东水工闸门运行工三级(高级工)历年参考题库典型考点含答案解析
- 2025年事业单位工勤技能-广东-广东医技工二级(技师)历年参考题库典型考点含答案解析
- 2020-2025年设备监理师之设备工程监理基础及相关知识高分通关题型题库附解析答案
- 2020-2025年基金从业资格证之私募股权投资基金基础知识通关题库(附答案)
- 2025年中级卫生职称-主管技师-输血技术(中级)代码:390历年参考题库典型考点含答案解析
- 2025年银行金融类-金融考试-期货从业历年参考题库含答案解析(5套)
- 2023年设备监理师之设备监理合同通关提分题库及完整答案
- 园林工程竣工验收与养护期
- 儿童感觉统合能力发展评定量表
- 案卷评查培训课件模板
- 一二手联动培训课件
- 创业中的团队管理与组建
- 丙酸丙酯的分离工艺
- 二维层状材料的堆叠效应
- 骨科膝骨关节炎一病一品优质护理汇报课件
- 15D502 等电位联结安装
- 两单两卡安全培训
- 审计资料交接清单
评论
0/150
提交评论