311数系的扩充复数的概念_优质课.ppt_第1页
311数系的扩充复数的概念_优质课.ppt_第2页
311数系的扩充复数的概念_优质课.ppt_第3页
311数系的扩充复数的概念_优质课.ppt_第4页
311数系的扩充复数的概念_优质课.ppt_第5页
已阅读5页,还剩18页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

3.1.1数系的扩充与复数的概念,数系的扩充,自然数(正整数与零),整数,有理数,实数,?,自然数(正整数与零),整数,有理数,实数,合情推理,类比扩充,我们能否将实数集进行扩充,使得在新的数集中,该问题能得到圆满解决呢?,思考?,引入一个新数:,一元二次方程在实数集范围内的解是?,引入新数,完善数系,为了解决负数开平方问题,数学家大胆引入一个新数i,把i叫做虚数单位,并且规定:(1)i21;(2)实数可以与i进行四则运算,在进行四则运算时,原有的加法与乘法的运算律(包括交换律、结合律和分配律)仍然成立.,问题解决:,现在我们就引入这样一个数i,把i叫做虚数单位,并且规定:(1)i21;(2)实数可以与i进行四则运算,在进行四则运算时,原有的加法与乘法的运算率(包括交换率、结合率和分配率)仍然成立。,形如a+bi(a,bR)的数叫做复数.,全体复数所形成的集合叫做复数集,一般用字母C表示.,讲解新课,1.复数的代数形式:,通常用字母z表示,即,其中称为虚数单位。,讲解新课,2.复数的分类:,非纯虚数,纯虚数,虚数,实数,虚数集,复数集,实数集,NZQRC,练一练:,1.说明下列数中,那些是实数,哪些是虚数,哪些是纯虚数,并指出复数的实部与虚部。,5+8,,0,例1:实数m取什么值时,复数(1)实数?(2)虚数?(3)纯虚数?,解:(1)当,即时,复数z是实数,(2)当,即时,复数z是虚数,(3)当,即时,复数z是纯虚数,练习:当m为何实数时,复数(1)实数(2)虚数(3)纯虚数,(3)m=-2,(1)m=,(2)m,3.规定:如果两个复数的实部和虚部分别相等,那么我们就说这两个复数相等,注:,2)一般来说,两个复数只能说相等或不相等,而不能比较大小了.,例2:已知,其中求,解:根据复数相等的定义,得方程组,得,解题思考:,复数相等的问题,转化,求方程组的解的问题,一种重要的数学思想:转化思想,1、若x,y为实数,且求x,y.,练习:,2.若(2x2-3x-2)+(x2-5x+6)=0,求x的值.,x=2,当堂练习,1.a=0是复数a+bi(a,bR)为纯虚数的()A必要条件B充分条件C充要条件D非必要非充分条件2.以3i-2的虚部为实部,以3i2+3i的实部为虚部的复数是()A-2+3iB3-3iC-3+3iD3+3i3.若复数(a2-3a+2)+(a-1)i是纯虚数,则实数a的值为。4.复数4-3a-a2i与复数a2+4ai相等,则实数a的值为。,小结:,1.虚数单位i的引入;,数系的扩充,自然数(正整数与零),整数,有理数,实数,复数,?,?,C,谢谢你的坚持!,谢谢你的奋进!,谢谢你的努力!,1.指出复数z的实部和虚部;,2.实数m为何值时,(1)实数?(2)虚数?(3)零?(4)纯虚数?(5)负数?,机动题,挑战习题:,1、已知两个复数x2-1+(y+1)i大于,2x+2+(y2-1)i试求实数x,y的取值范围,唯物辨证法认为,事物是发展变化的,事物内部的矛盾运动是推动事物向前发展的根本动力.由于实数的局限性,导致某些数学问题出现矛盾的结果,数学家们预测,在实数范围外还有一类新数存在,还有比实数集更大的数系.,数系每次扩充的基本原则:,第一,增加新元素;,第二,原有的运算性质仍然成立;,第三,新数系能解决旧数系中的矛盾.,复数的发展史虚数这种假设,是需要勇气的,人们在当时是无法接受的,认为她是想象的,不存在的,但这丝毫不影响数学家对虚数单位的假设研究:第一次认真讨论这种数的是文艺复兴时期意大利有名的数学“怪杰”卡丹,他是1545年开始讨论这种数的,当时复数被他称作“诡辩量”.几乎过了100年,笛卡尔才给这种“虚幻之数”取了一个名字虚数,但是又过了140年,欧拉还是说这种数只是存在于“幻想之中”,并用(imaginary,即虚幻的缩写)来表示它的单位.后来德国数学家高斯给出了复数的定义,但他们仍感到这种数有点虚无缥缈,尽管他们也感到它的作用1830年,高斯详细论述了用直角坐标系的复平面上的点表示复数,使复数有了立足之地,人们才最终承认了复数.到今天复数已经成为现代科技中普遍运用的数学工具之一.,C,古老的问题:“正方形的对角线是个奇怪的数”,关于无理数的发现古希腊的毕达哥拉斯学派认为,世间任何数都可以用整数或分数表示,并将此作为他们的一条信条.有一天,这个学派中的一个成员希伯斯突然发现边长为1的正方形的对角线是个奇怪的数,于是努力研究,终于证明出它不能用整数或分数表示.但这打破了毕达哥拉斯学派的信条,于是毕达哥拉斯命令他不许外传.但希伯斯却将这一秘密透露了出去.毕达

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论