已阅读5页,还剩13页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
24.1.3弧、弦、圆心角的关系,1,(1)圆是轴对称图形,它的对称轴是过圆心的直线。,一、,圆的对称性如何?(导航17页请你思考1),(2)圆是中心对称图形,它的对称中心是圆心。,二、想一想,圆绕着它的圆心旋转多少度就能与原图形重合?,(3)结论:圆绕圆心旋转任意一个角度都能与原图形重合,这是圆的旋转不变性。,2,什么叫圆心角?(导航17页请你思考2),圆心角顶点在圆心的角叫圆心角。(如AOB).弦心距过圆心作弦的垂线,圆心与垂足之间的距离叫弦心距。(如线段OD).,3,根据旋转的性质,将圆心角AOB绕圆心O旋转到AOB的位置时,AOBAOB,OAOB点A与A重合,B与B重合,O,A,B,O,A,B,A,B,A,B,三、,弧AB与弧AB重合,AB与AB重合,如图,将圆心角AOB绕圆心O旋转到AOB的位置,你能发现哪些等量关系?为什么?(导航17页请你思考3),4,弧、弦与圆心角的关系定理(),四、说一说,五、议一议,定理“在同圆或等圆中,相等的圆心角所对的弧相等,所对的弦也相等”中,可否把条件“在同圆或等圆中”去掉?为什么?,等对等定理,5,不能去掉.反例:如图,虽然AOB=AOB,但ABAB,弧AB弧AB,定理“在同圆或等圆中,相等的圆心角所对的弧相等,所对的弦也相等”中,可否把条件“在同圆或等圆中”去掉?为什么?,6,推论,在同圆或等圆中,如果两个圆心角,两条弧,两条弦(4)两条弦心距中,有一组量相等,那么它们所对应的其余各组量都分别相等.,如由条件:,AB=AB,OD=OD,AOB=AOB,在这里可以不说“在同圆或等圆中”吗?,7,如图,AB、CD是O的两条弦(1)如果AB=CD,那么_,_(2)如果,那么_,_(3)如果AOB=COD,那么_,_(4)如果AB=CD,OEAB于E,OFCD于F,OE与OF相等吗?为什么?,AB=CD,AB=CD,四、练习,OEOF证明:OEABOFCDABCDAECFOAOCRTAOERTCOFOEOF,8,证明:,AB=AC,又ACB=60,,AB=BC=CA.,AOBBOCAOC.,A,B,C,O,五、例题,例1如图,在O中,,ACB=60,求证AOB=BOC=AOC,9,巩固深化,在同圆或等圆中,一弦是另一弦的二倍,那么它所对的弧是另一弦所对的弧的二倍吗?试画图分析反之呢?,10,如图,AB是O的直径,COD=35,求AOE的度数,解:,六、练习,11,七、思考,(2)如图,圆O的两条弦AB、CD互相垂直且交于点P,OE垂直于AB,OF垂直于CD,垂足分别是E、F,且弧AC=弧BD,试探究四边形EOFP的形状,并说明理由。,12,2、如图,点O是EPF的平分线上的一点,以O为圆心的圆和角的两边分别交于点A、B和C、D。求证:AB=CD,证明:作OMAB,ONCD,M,N为垂足。,推广:若将上题中的点O看作是沿着EPF的平分线运动的。在EPF的每边与圆O有两个交点的时候,是否都能够得到上题的结论?,13,七、思考,(4)如图,已知AB、CD为O的两条弦,弧AD=弧BC,求证AB=CD,14,(5)如图,已知OA、OB是O的半径,点C为AB的中点,M、N分别为OA、OB的中点,求证:MC=NC,15,(6)如图,BC为O的直径,OA是O的半径,弦BEOA,求证:AC=AE,16,证:连结OA、OB,设分别与CD、EF交于点F、GA为CD中点,B为EF中点OACD,OBEF故AFC=BGE=90又由OA=OB,OAB=OBA且AM=BNAFMBGNAF=BGOF=OGDC=EF,17,圆的对称性,圆的中心对称性(圆是中心对称图形),圆心角、弧、弦、弦心距之间的关系,四、总结,思考题,证明圆弧
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 导管腺癌的护理
- 2026柳州五菱新能源校园招聘历年真题汇编附答案解析
- 2025辽宁沈阳市医疗卫生系统面向部分医学院校应届毕业生招聘175人备考公基题库带答案解析
- 2026年设备监理师之设备监理合同考试题库(能力提升)
- 2025年西安市长安区第三中学教师招聘历年真题汇编附答案解析
- 浙江国企招聘-2025浙江浙交检测技术有限公司招聘5人历年真题汇编及答案解析(夺冠)
- 2026年网络预约出租汽车驾驶员从业资格考试题库及参考答案(典型题)
- 招34人!青海省气象部门2026年度事业单位公开招聘应届高校毕业生(第一批次)历年真题汇编及答案解析(夺冠)
- 2026广东佛山农商银行校园招聘模拟试卷附答案解析
- 2025广东广州市卫生健康委员会直属事业单位广州市红十字会医院招聘47人(第一次)模拟试卷带答案解析
- 三分钟爱国小故事简短
- 2024秋期国家开放大学专科《经济学基础》一平台在线形考(形考任务1至5)试题及答案
- 统编版中考语文一轮复习:义务教育语文课程常用字表(3500字注音版)(2022版课标)
- Unit1 单元整体教学设计 2024-2025学年人教版(2024)七年级英语上册
- 免租金协议书最简单三个步骤
- 城市公共汽电车场站设施管理规范
- 咸阳市县级地图可编辑矢量行政区划(陕西省)
- 国家开放大学专科《统计与数据分析基础(统计学原理)》一平台在线形考(形成性考核一至三)试题及答案
- JT-T-1178.2-2019营运货车安全技术条件第2部分:牵引车辆与挂车
- 2021年上海卷高考语文作文解析与范文展示
- MOOC 创业基础-南京航空航天大学 中国大学慕课答案
评论
0/150
提交评论