




免费预览已结束,剩余32页可下载查看
下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
第八讲,2.6利用Z变换分析信号和系统的频域特性,要点,离散系统的系统函数和频率响应,系统函数与差分方程的互求系统频率响应的意义由系统函数的极点分布分析系统的因果性和稳定性由系统函数的零极点分析系统的频率特性-系统函数零极点的几何意义,第二章作业,2-1(1)(3)(4)(6)(7),2-2,2-3,2-4,2-5(1)(3)(5),2-6(1)(3),2-10,2-12,2-132-14(2)(3)(6),2-16,2-23,2-24,2-28,2.6.1离散系统的系统函数、系统频率响应(传输函数),1.LSI系统的系统函数H(z):单位抽样响应h(n)的z变换,其中:y(n)=x(n)*h(n)Y(z)=X(z)H(z),2.系统的频率响应:,单位圆上的系统函数(传输函数),单位抽样响应h(n)的Fourier变换,3.系统频率响应的意义,1)LSI系统对复指数序列的稳态响应:,2)LSI系统对正弦序列的稳态响应,输出同频正弦序列幅度受频率响应幅度加权相位为输入相位与系统相位响应之和,3)LSI系统对任意输入序列的稳态响应,其中:,微分增量(复指数):,2.6.2用系统函数的极点分布分析系统的因果性和稳定性,稳定系统的系统函数H(z)的Roc须包含单位圆,即频率响应存在且连续,H(z)须从单位圆到的整个z域内收敛即系统函数H(z)的全部极点必须在单位圆内,1)因果:,2)稳定:,序列h(n)绝对可和,即,而h(n)的z变换的Roc:,3)因果稳定:Roc:,2.6.3利用系统的零极点分析系统的频率特性,常系数线性差分方程:,取z变换,则系统函数,利用H(z)在z平面上的零极点分布,频率响应:,则频率响应的幅度:,令,幅角:,零点位置影响凹谷点的位置与深度零点在单位圆上,谷点为零零点趋向于单位圆,谷点趋向于零极点位置影响凸峰的位置和深度极点趋向于单位圆,峰值趋向于无穷极点在单位圆外,系统不稳定,图2.6.2频响的几何表示法,例2.6.2已知H(z)=z-1,分析其频率特性解:由H(z)=z-1,极点为z=0,幅度特性|H(ej)|=1相位特性()=-频响如图2.6.3所示。用几何方法也容易确定,当=0转到=2时,极点矢量的长度始终为1。由该例可以得到结论,处于原点处的零点或极点,由于零点矢量长度或者是极点矢量长度始终为1,因此原点处的零极点不影响系统的频率特性。,图2.6.3H(z)=z-1的频响,例2.6.3设一阶系统的差分方程为y(n)=by(n-1)+x(n)用几何法分析其幅度特性。解:由系统差分方程得到系统函数为系统极点z=b,零点z=0,当B点从=0逆时旋转时,在=0点由于极点矢量长度最短,形成波峰。在=时形成波谷。z=0处零点不影响频响。极零点分布及幅度特性如图2.6.4所示。,图2.6.4例2.6.3插图,例2.6.4已知H(z)=1-z-N,试定性画出系统的幅频特性。解:H(z)的极点为z=0,这是一个N阶极点,它不影响系统的频响。零点有N个,由分子多项式的根决定,N个零点等间隔分布在单位圆上,设N=8,极零点分布如图2.6.5所示。当从零变化到2时,每遇到一个零点,幅度为零,在两个零点的中间幅度最大,形成峰值。幅度谷值点频率为:k=(2/N)k,k=0,1,2,(N-1)。一般将具有如图2.6.5所示的幅度特性的滤波器称为梳状滤波器。,图2.6.5梳状滤波器的极零点分布及幅度特性,例2.6.5利用几何法分析矩形序列的幅频特性。解:,零点:极点:,设N=8,z=1处的极点零点相互抵消。这样极零点分布及其幅频特性如图2.6.6所示。,阶零点,图2.6.6N=8矩形序列极零点分布及幅度特性,补充:IIR系统和FIR系统,无限长单位冲激响应(IIR)系统:单位冲激响应h(n)是无限长序列,有限长单位冲激响应(FIR)系统:单位冲激响应h(n)是有限长序列,IIR系统:至少有一个,FIR系统:全部,全极点系统:分子只有常数项,零极点系统:分子不止常数项,收敛域内无极点,是全零点系统,IIR系统:至少有一个,有反馈环路,采用递归型结构,FIR系统:全部,
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025年事业单位工勤技能-北京-北京汽车驾驶与维修员一级(高级技师)历年参考题库含答案解析
- 2025年中级卫生职称-主治医师-重症医学(中级)代码:359历年参考题库典型考点含答案解析
- 2025年通信专业技术-通信专业技术(中级)-中级通信专业技术(设备环境实务)历年参考题库含答案解析(5套)
- 2025年职业技能鉴定-汽轮机本体检修工-汽轮机本体检修工(高级)历年参考题库含答案解析(5套)
- 2025年职业技能鉴定-供水供应工-供水供应工证(高级)历年参考题库含答案解析(5套)
- 2025年综合评标专家-湖北-湖北综合评标专家(交通运输厅)历年参考题库含答案解析(5套)
- 热电厂锅炉安全知识培训课件
- 季氏将伐颛臾课件
- 烟草公司消防知识培训课件
- 烟花爆竹基础知识培训课件
- Unit3Timeschange!Developingideas教学设计2023-2024学年高二英语外研版(2019)选择性必修第二册
- 天津市南开区2023-2024学年六年级下学期期末数学试题
- 酒店开业客房筹备倒计时模板
- NBT《核动力厂场内应急设施设计规范》
- 2024年大学计算机基础考试题库带答案(黄金题型)
- 模块化建筑的结构设计与BIM技术应用研究
- GB/T 43681-2024生态系统评估区域生态系统调查方法
- 供应链金融与中小企业融资问题
- 消防安全常识口袋书
- 工业自动化的自动化控制系统架构
- 学校驻校教官培训方案
评论
0/150
提交评论