双曲线及其标准方程(公开课)_第1页
双曲线及其标准方程(公开课)_第2页
双曲线及其标准方程(公开课)_第3页
双曲线及其标准方程(公开课)_第4页
双曲线及其标准方程(公开课)_第5页
已阅读5页,还剩12页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

. 1、我们知道,2 .引进问题:椭圆。 双曲线及其标准方程。 将图(a )、|MF1|-|MF2|=|F2F|=2a、图(b )、|MF2|-|MF1|=2a以上两条曲线合成后的曲线称为双曲线,从开始,|MF1|-|MF2|=2a (差的绝对值)、f、两个定点F1、F2双曲线的焦点、|MF1|-|MF2|=2a (差的绝对值)。|MF1|-|MF2|=2a,(1)两条线,(2)不表示任何轨迹,x,o,P(x,y ),双曲线焦距为2c(c0),F1(-c,0 ),F2(c,0 )常数=2a,F1,F2, 将具有p、F1、F2的直线作为x轴,将线段F1F2的中点作为原点建立直角坐标系,1 .建系.2 .建点.3 .列式.|PF1-PF2|=2a,4 .简化,项的两侧平方整理:两侧平方整理:双曲定义知:代入上式进行整理:焦点位于y轴上的双曲的标准方程式、双曲标准方程:焦点在x轴上,焦点在y轴上,问题:如何确定双曲焦点在哪个轴上? F(c,0 )、F(0,c )、1.x2、y2中哪个系数是正的,焦点在哪个轴上2 .双曲线的焦点位置与分母的大小无关。 焦点在x轴上,焦点在y轴上,练习:求以下双曲线的焦点坐标(请注意焦点的位置),f (5,0 ),f (0,5 ).例1中双曲线的焦点为f1(-5,0 ),f2(5,0 ),双曲线上的点p到f1,f2的距离之差的绝对值为6,双曲线的标准方程式. 2a=6,c=5,8756; 由于a=3,c=5 b2=52-32=16,所以求双曲线标准方程式如下:从双曲线的焦点开始,在x轴上,将该标准方程式设为:解:将点p的轨迹设为双曲线,进行授课练习,1 .写入适合下列条件的双曲线的标准方程式1)a=4,b=3,焦点在x轴上.2)a=,c=4, 解:将双曲线的标准方程式a、b这2点重合在x轴上,点o和线段AB的中点重合后,可知解:在声速和a地子弹的爆炸声比b地慢2s,a地和爆炸点的距离比b地和爆炸点的距离远680m。 因为|AB|680m,爆发点的轨迹是以a、b为焦点的双曲线在b附近。 例2 .如图所示,确立直角坐标系xOy,将爆炸点p坐标设为(x,y )时,由于2a=680、a=340,因此在已知距离800m的a地点,子弹的爆炸声比比b地点慢2s,声速为340m/s,求出子弹的爆炸点的轨迹方程式如果,例3,方程式表示双曲线,则求出m的范围,求出解(m-1)(2-m)2或m1,|MF1|-|MF2|=2a(02a0,b0,其中,a未

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论