




已阅读5页,还剩71页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
DigitalImageProcessingChapter3:ImageEnhancementintheSpatialDomain15June2007,SpatialDomain,Whatisspatialdomain,Thespacewhereallpixelsformanimage,Inspatialdomainwecanrepresentanimagebyf(x,y)wherexandyarecoordinatesalongxandyaxiswithrespecttoanorigin,ThereisdualitybetweenSpatialandFrequencyDomains,Imagesinthespatialdomainarepicturesinthexyplanewheretheword“distance”ismeaningful.,UsingtheFouriertransform,theword“distance”islostbuttheword“frequency”becomesalive.,ImageEnhancement,ImageEnhancementmeansimprovementofimagestobesuitableforspecificapplications.Example:Note:eachimageenhancementtechniquethatissuitableforoneapplicationmaynotbesuitableforotherapplications.,(ImagesfromRafaelC.GonzalezandRichardE.Wood,DigitalImageProcessing,2ndEdition.,ImageEnhancementExample,Originalimage,EnhancedimageusingGammacorrection,(ImagesfromRafaelC.GonzalezandRichardE.Wood,DigitalImageProcessing,2ndEdition.,=ImageenhancementusingprocessesperformedintheSpatialdomainresultinginimagesintheSpatialdomain.Wecanwrittenas,ImageEnhancementintheSpatialDomain,wheref(x,y)isanoriginalimage,g(x,y)isanoutputandTisafunctiondefinedintheareaaround(x,y),Note:Tmayhaveoneinputasapixelvalueat(x,y)onlyormultipleinputsaspixelsinneighborsof(x,y)dependingineachfunction.Ex.Contrastenhancementusesapixelvalueat(x,y)onlyforaninputwhilesmoothingfilteuseseveralpixelsaround(x,y)asinputs.,TypesofImageEnhancementintheSpatialDomain,-Singlepixelmethods-GrayleveltransformationsExample-Historgramequalization-Contraststretching-Arithmetic/logicoperationsExamples-Imagesubtraction-Imageaveraging-MultiplepixelmethodsExamplesSpatialfiltering-Smoothingfilters-Sharpeningfilters,GrayLevelTransformation,Transformsintensityofanoriginalimageintointensityofanoutputimageusingafunction:,wherer=inputintensityands=outputintensity,Example:Contrastenhancement,(ImagesfromRafaelC.GonzalezandRichardE.Wood,DigitalImageProcessing,2ndEdition.,ImageNegative,White,Black,Inputintensity,Outputintensity,Originaldigitalmammogram,L=thenumberofgraylevels,0,L-1,L-1,Negativedigitalmammogram,(ImagesfromRafaelC.GonzalezandRichardE.Wood,DigitalImageProcessing,2ndEdition.,Black,White,LogTransformations,Fourierspectrum,LogTr.ofFourierspectrum,Application,(ImagesfromRafaelC.GonzalezandRichardE.Wood,DigitalImageProcessing,2ndEdition.,Power-LawTransformations,(ImagesfromRafaelC.GonzalezandRichardE.Wood,DigitalImageProcessing,2ndEdition.,Power-LawTransformations:GammaCorrectionApplication,Desiredimage,ImagedisplayedatMonitor,AfterGammacorrection,(ImagesfromRafaelC.GonzalezandRichardE.Wood,DigitalImageProcessing,2ndEdition.,ImagedisplayedatMonitor,Power-LawTransformations:GammaCorrectionApplication,MRIImageafterGammaCorrection,(ImagesfromRafaelC.GonzalezandRichardE.Wood,DigitalImageProcessing,2ndEdition.,Power-LawTransformations:GammaCorrectionApplication,ArielimagesafterGammaCorrection,(ImagesfromRafaelC.GonzalezandRichardE.Wood,DigitalImageProcessing,2ndEdition.,ContrastStretching,Beforecontrastenhancement,After,Contrastmeansthedifferencebetweenthebrightestanddarkestintensities,(ImagesfromRafaelC.GonzalezandRichardE.Wood,DigitalImageProcessing,2ndEdition.,Howtoknowwherethecontrastisenhanced?,NoticetheslopeofT(r)ifSlope1ContrastincreasesifSlope1ContrastdecreaseifSlope=1nochange,Dr,Ds,SmallerDryieldswiderDs=increasingContrast,(ImagesfromRafaelC.GonzalezandRichardE.Wood,DigitalImageProcessing,2ndEdition.,GrayLevelSlicing,(ImagesfromRafaelC.GonzalezandRichardE.Wood,DigitalImageProcessing,2ndEdition.,Bit-planeSlicing,Bit7,Bit6,Bit2,Bit1,Bit5,Bit3,(ImagesfromRafaelC.GonzalezandRichardE.Wood,DigitalImageProcessing,2ndEdition.,Histogram,Histogram=Graphofpopulationfrequencies,Gradesofthecourse178xxx,HistogramofanImage,pixel,pixel,=graphofno.ofpixelsvsintensities,(ImagesfromRafaelC.GonzalezandRichardE.Wood,DigitalImageProcessing,2ndEdition.,Brightimagehashistogramontheright,Darkimagehashistogramontheleft,HistogramofanImage(cont.),lowcontrastimagehasnarrowhistogram,(ImagesfromRafaelC.GonzalezandRichardE.Wood,DigitalImageProcessing,2ndEdition.,highcontrastimagehaswidehistogram,HistogramProcessing,=intensitytransformationbasedonhistograminformationtoyielddesiredhistogram,-Histogramequalization,-Histogrammatching,Tomakehistogramdistributeduniformly,Tomakehistogramasthedesire,MonotonicallyIncreasingFunction,=Functionthatisonlyincreasingorconstant,PropertiesofHistogramprocessingfunction,1.Monotonicallyincreasingfunction2.,ProbabilityDensityFunction,andrelationbetweensandris,HistogramisanalogoustoProbabilityDensityFunction(PDF)whichrepresentdensityofpopulation,LetsandrbeRandomvariableswithPDFps(s)andpr(r)respectively,Weget,HistogramEqualization,Let,Weget,!,HistogramEqualization,FormulainthepreviousslideisforacontinuousPDF,ForHistogramofDigitalImage,weuse,nj=thenumberofpixelswithintensity=jN=thenumberoftotalpixels,HistogramEqualizationExample,HistogramEqualizationExample(cont.),HistogramEqualization,(ImagesfromRafaelC.GonzalezandRichardE.Wood,DigitalImageProcessing,2ndEdition.,HistogramEqualization(cont.),(ImagesfromRafaelC.GonzalezandRichardE.Wood,DigitalImageProcessing,2ndEdition.,HistogramEqualization(cont.),(ImagesfromRafaelC.GonzalezandRichardE.Wood,DigitalImageProcessing,2ndEdition.,HistogramEqualization(cont.),(ImagesfromRafaelC.GonzalezandRichardE.Wood,DigitalImageProcessing,2ndEdition.,HistogramEqualization(cont.),Originalimage,Afterhistogramequalization,theimagebecomealowcontrastimage,(ImagesfromRafaelC.GonzalezandRichardE.Wood,DigitalImageProcessing,2ndEdition.,HistogramMatching:Algorithm,Concept:fromHistogramequalization,wehave,Wegetps(s)=1,WewantanoutputimagetohavePDFpz(z),Applyhistogramequalizationtopz(z),weget,Wegetpv(v)=1,Sinceps(s)=pv(v)=1thereforesandvareequivalent,Therefore,wecantransformrtozby,r,T(),s,G-1(),z,Totransformimagehistogramtobeadesiredhistogram,HistogramMatching:Algorithm(cont.),s=T(r),v=G(z),z=G-1(v),1,2,3,4,(ImagesfromRafaelC.GonzalezandRichardE.Wood,DigitalImageProcessing,2ndEdition.,HistogramMatchingExample,Inputimagehistogram,DesiredHistogram,Example,Userdefine,Originaldata,HistogramMatchingExample(cont.),1.ApplyHistogramEqualizationtobothtables,sk=T(rk),vk=G(zk),HistogramMatchingExample(cont.),2.Getamap,sk=T(rk),zk=G-1(vk),rs,vz,sv,Weget,ActualOutputHistogram,HistogramMatchingExample(cont.),Desiredhistogram,Transferfunction,Actualhistogram,(ImagesfromRafaelC.GonzalezandRichardE.Wood,DigitalImageProcessing,2ndEdition.,HistogramMatchingExample(cont.),Originalimage,Afterhistogramequalization,Afterhistogrammatching,LocalEnhancement:LocalHistogramEqualization,Concept:Performhistogramequalizationinasmallneighborhood,Orignalimage,AfterHistEq.,AfterLocalHistEq.In7x7neighborhood,(ImagesfromRafaelC.GonzalezandRichardE.Wood,DigitalImageProcessing,2ndEdition.,LocalEnhancement:HistogramStatisticforImageEnhancement,WecanusestatisticparameterssuchasMean,VarianceofLocalareaforimageenhancement,ImageoftungstenfilamenttakenusingAnelectronmicroscope,Inthelowerrightcorner,thereisafilamentinthebackgroundwhichisverydarkandwewantthistobebrighter.,Wecannotincreasethebrightnessofthewholeimagesincethewhitefilamentwillbetoobright.,(ImagesfromRafaelC.GonzalezandRichardE.Wood,DigitalImageProcessing,2ndEdition.,LocalEnhancement,Example:Localenhancementforthistask,Originalimage,LocalVarianceimage,Multiplicationfactor,(ImagesfromRafaelC.GonzalezandRichardE.Wood,DigitalImageProcessing,2ndEdition.,LocalEnhancement,Outputimage,(ImagesfromRafaelC.GonzalezandRichardE.Wood,DigitalImageProcessing,2ndEdition.,LogicOperations,AND,OR,ResultRegionofInterest,Imagemask,Originalimage,Application:Cropareasofinterest,(ImagesfromRafaelC.GonzalezandRichardE.Wood,DigitalImageProcessing,2ndEdition.,ArithmeticOperation:Subtraction,Errorimage,Application:Errormeasurement,(ImagesfromRafaelC.GonzalezandRichardE.Wood,DigitalImageProcessing,2ndEdition.,ArithmeticOperation:Subtraction(cont.),Application:Maskmoderadiographyinangiographywork,(ImagesfromRafaelC.GonzalezandRichardE.Wood,DigitalImageProcessing,2ndEdition.,ArithmeticOperation:ImageAveraging,Application:Noisereduction,AveragingresultsinreductionofNoisevariance,Degradedimage,(noise),Imageaveraging,(ImagesfromRafaelC.GonzalezandRichardE.Wood,DigitalImageProcessing,2ndEdition.,ArithmeticOperation:ImageAveraging(cont.),(ImagesfromRafaelC.GonzalezandRichardE.Wood,DigitalImageProcessing,2ndEdition.,SometimeweneedtomanipulatevaluesobtainedfromneighboringpixelsExample:Howcanwecomputeanaveragevalueofpixelsina3x3regioncenteratapixelz?,4,4,6,7,6,1,9,2,2,2,7,5,2,2,6,4,4,5,2,1,2,1,3,3,4,2,9,5,7,7,3,5,8,2,2,2,Pixelz,Image,BasicsofSpatialFiltering,4,4,6,7,6,1,9,2,2,2,7,5,2,2,6,4,4,5,2,1,2,1,3,3,4,2,9,5,7,7,3,5,8,2,2,2,Pixelz,Step1.Selectedonlyneededpixels,4,6,7,6,9,1,3,3,4,BasicsofSpatialFiltering(cont.),Step2.Multiplyeverypixelby1/9andthensumupthevalues,X,MaskorWindoworTemplate,BasicsofSpatialFiltering(cont.),Question:Howtocomputethe3x3averagevaluesateverypixels?,4,4,6,7,6,1,9,2,2,2,7,5,2,2,6,4,4,5,2,1,2,1,3,3,4,2,9,5,7,7,Solution:Imaginethatwehavea3x3windowthatcanbeplacedeverywhereontheimage,MaskingWindow,BasicsofSpatialFiltering(cont.),4.3,Step1:Movethewindowtothefirstlocationwherewewanttocomputetheaveragevalueandthenselectonlypixelsinsidethewindow.,Step2:Computetheaveragevalue,Subimagep,Originalimage,Outputimage,Step3:Placetheresultatthepixelintheoutputimage,Step4:MovethewindowtothenextlocationandgotoStep2,BasicsofSpatialFiltering(cont.),The3x3averagingmethodisoneexampleofthemaskoperationorSpatialfiltering.wThemaskoperationhasthecorrespondingmask(sometimescalledwindowortemplate).wThemaskcontainscoefficientstobemultipliedwithpixelvalues.,Maskcoefficients,Example:movingaveraging,Themaskofthe3x3movingaveragefilterhasallcoefficients=1/9,BasicsofSpatialFiltering(cont.),Themaskoperationateachpointisperformedby:1.Movethereferencepoint(center)ofmasktothelocationtobecomputed2.Computesumofproductsbetweenmaskcoefficientsandpixelsinsubimageunderthemask.,Subimage,Maskcoefficients,Maskframe,Thereferencepointofthemask,BasicsofSpatialFiltering(cont.),Thespatialfilteringonthewholeimageisgivenby:Movethemaskovertheimageateachlocation.Computesumofproductsbetweenthemaskcoefficeintsandpixelsinsidesubimageunderthemask.Storetheresultsatthecorrespondingpixelsoftheoutputimage.Movethemasktothenextlocationandgotostep2untilallpixellocationshavebeenused.,BasicsofSpatialFiltering(cont.),ExamplesofSpatialFilteringMasks,Examplesofthemasks,Sobeloperators,3x3movingaveragefilter,3x3sharpeningfilter,SmoothingLinearFilter:MovingAverage,Application:noisereductionandimagesmoothing,Disadvantage:losesharpdetails,(ImagesfromRafaelC.GonzalezandRichardE.Wood,DigitalImageProcessing,2ndEdition.,SmoothingLinearFilter(cont.),(ImagesfromRafaelC.GonzalezandRichardE.Wood,DigitalImageProcessing,2ndEdition.,Order-StatisticFilters,subimage,Originalimage,Movingwindow,StatisticparametersMean,Median,Mode,Min,Max,Etc.,Outputimage,Order-StatisticFilters:MedianFilter,(ImagesfromRafaelC.GonzalezandRichardE.Wood,DigitalImageProcessing,2ndEdition.,SharpeningSpatialFilters,Thereareintensitydiscontinuitiesnearobjectedgesinanimage,(ImagesfromRafaelC.GonzalezandRichardE.Wood,DigitalImageProcessing,2ndEdition.,LaplacianSharpening:Howitworks,Intensityprofile,1stderivative,2ndderivative,p(x),Edge,LaplacianSharpening:Howitworks(cont.),Laplaciansharpeningresultsinlargerintensitydiscontinuityneartheedge.,p(x),LaplacianSharpening:Howitworks(cont.),p(x),Beforesharpening,Aftersharpening,LaplacianMasks,Application:Enhanc
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 一周的小结15篇
- 抗震加固改造项目实施方案
- 住校生安全保证书模板
- 长春早期教育职业学院《体育教学设计与技能训练》2023-2024学年第二学期期末试卷
- 北京工商大学《MySQL数据库》2023-2024学年第二学期期末试卷
- 广东生态工程职业学院《合唱(二)》2023-2024学年第二学期期末试卷
- 重庆三峡医药高等专科学校《专业制图综合》2023-2024学年第二学期期末试卷
- 哈尔滨应用职业技术学院《形式与政策教育》2023-2024学年第二学期期末试卷
- 濮阳科技职业学院《现代工程图学》2023-2024学年第二学期期末试卷
- 四川文化艺术学院《理财规划实训》2023-2024学年第二学期期末试卷
- 科研伦理试题答案及解析
- 2025成都市新劳动合同书范本
- 第二章中国体育产业的发展与现状
- 2025届高三押题信息卷(一)地理及答案
- 2025年北京市朝阳区九年级初三一模英语试卷(含答案)
- 广东省普通高中学生档案
- 地铁车站主体防水工程施工组织设计方案
- 血栓风险评估量表(caprini和Padua)
- 班组施工协议正式版
- 人防门吊装施工方案
- 利德华福harsverta系列高压变频调速系统技术手册(最新版)
评论
0/150
提交评论