资源目录
压缩包内文档预览:
编号:81015261
类型:共享资源
大小:1.24MB
格式:ZIP
上传时间:2020-05-24
上传人:QQ14****9609
认证信息
个人认证
郭**(实名认证)
陕西
IP属地:陕西
20
积分
- 关 键 词:
-
基于
PROE
电池
注塑
模具设计
说明书
- 资源描述:
-
基于PROE的电池后盖注塑模具设计说明书,基于,PROE,电池,注塑,模具设计,说明书
- 内容简介:
-
外文资料翻译资料来源:书籍文章名:Chapter 4Casting Dies书刊名:English for Die & Mould Design and Manufacturing作 者:刘建雄 王家惠廖丕博主编出版社:北京大学出版社,2002章 节:Chapter 4Casting Dies页 码:P61P96文章译名: 铸造模具 1Chapter 4Forging Die4.1 IntroductionForging is a process in which the workpiece is shaped by compressive forces applied through various dies and tools. It is one of the oldest metalworking operations, dating back at least to 4000 B.C.perhaps as far back as 8000 B.C. Forging was first used to make jewelry, coins, and various implements by hammering metal with tools made of stone.Simple forging operations can be performed with a heavy hand hammer and an anvil, as was traditionally done by blacksmiths. Most forgings, however, require a set of dies and such equipment as a press or a forging hammer.Typical forged products are bolts and rivets, connecting rods, shafts for turbines, gears, hand tools, and structural components for machinery, aircraft, railroads, and a variety of other transportation equipment.Metal flow and grain structure can be controlled, so forged parts have good strength and toughness; they can be used reliably for highly stressed and critical applications (Fig. 4-1). Forg- ing may be done at room temperature (cold forging) or at elevated temperatures (warm or hot forging, depending on the temperature).(a) (b)(c)Fig. 4-1 A part made by three different processes, showing grain flow(a) casting (b) machining (c) forgingBecause of the higher strength of the material, cold forging requires greater forces, and the workpiece materials must have sufficient ductility at room temperature. Cold-forged parts have good surface finish and dimensional accuracy. Hot forging requires smaller forces, butproducesdimensionalaccuracyandsurfacefinishthatarenotasgood.Forgingsgenerallyrequireadditionalfinishingoperations,suchasheattreating,tomodifyproperties,andthenmachiningtoobtainaccuratefinisheddimensions.Theseoperationscanbeminimizedbyprecisionforging,whichisanimportantexampleofthe3 4.2 Open-Die ForgingOpen-die forging is the simplest forging process. Although most open-die forging generally weighs 15 kg500 kg, forging as heavy as 300 tons have been made. Sizes may range from very small parts up to shafts some 23 m long (in the case of ship propellers).The open-die forging process can be depicted by a solid workpiece placed between two flat dies and reduced in height by compressing it (Fig. 4-2). This process is also called upsetting or flat-die forging. The die surfaces in open-die forging may have simple cavities, to produce relatively simple forgings. The deformation of the workpiece under ideal conditions is shown in Fig. 4-2 (b). Because constancy of volume is maintained, any reduction in height increases the diameter of the forged part.Note that, in Fig. 4-2 (b), the workpiece is deformed uniformly. In actual operations, the part develops a barrel shape (Fig. 4-2 (c); this deformation is also known as pancaking. Barreling is caused primarily by frictional forces at the die-workpiece interfaces that oppose theoutward flow of the materials at these interfaces. Barreling can be minimized if an effective lubricant is used.4WorkpieceDie(a)Die(b)(c)Friction forceBarrelingFig. 4-2 (a) Solid cylindrical billet upset between two flat dies (b) Uniform deformation of the billet without friction (c) Deformation with frictionBarreling can also occur in upsetting hot workpieces between cold dies. The material at and near the interfaces cools rapidly, while the rest of the workpiece remains relatively hot. Thus, the material at the ends of the workpiece has higher resistance to deformation than the material at its center. Consequently, the central portion of the workpiece expands laterally to a greater extent than do its ends. Barreling from thermal effects can be reduced or eliminated by using heated dies; thermal barriers such as glass cloth at the die-workpiece interfaces are also used.17Cogging, also called drawing out, is basically an open-die forging operation in which the thickness of a bar is reduced by successive forging steps at specific intervals (Fig. 4-3). Because the contact area per stroke is small, a long section of a bar can be reduced in thickness without requiring large forces or machinery. Blacksmiths perform such operations with a hammer and an anvil using hot pieces of metal; iron fences of various designs are often made by this process.4.3 Impression-Die and Closed-Die ForgingIn impression-die forging, the workpiece acquires the shape of the die cavities (impressions) while being forged between two shaped dies (Fig. 4-4). Note that some of the material flows outward and forms a flash. The flash has a significant role in flow of material in impression-die forging: The thin flash cools rapidly, and, because of its frictional resistance, it subjects the material in the die cavity to high pressures, thereby encouraging the filling of the die cavity.Fig. 4-4 Stages in impression-die forging of a solid round billetThe blank to be forged is prepared by such means as (a) cutting or cropping from an extruded or drawn bar stock, (b) a preform in operations such as powder metallurgy, (c) casting, or (d) a preform blank in a prior forging operation. The blank is placed on the lower die and, as the upper die begins to descend, the blanks shape gradually changes, as is shown for the forging of a connecting rod in Fig. 4-5 (a).DieBlank (bar stock)EdgingBlockingFinishingTrimming (a)(b)(c) Workpiece DieFig. 4-5 (a) Stages in forging a connecting rod for an internal combustion engine (b) Fullering(b) Edging operations to distribute the material when preshaping the blank for forgingPreforming processes, such as fullering and edging (Figs. 4-5 (b) and (c), are used to distribute the material into various regions of the blank, much as they are in shaping dough to make pastry. In fullering, material is distributed away from an area; in edging, it is gathered into a localized area. The part is then formed into the rough shape of a connecting rod by a process called blocking, using blocker dies. The final operation is the finishing of the forging in impression dies that give the forging its final shape. The flash is removed usually by a trimming operation (Fig. 4-6).The examples shown in Figs. 4-4 and 4-5 (a) are also referred to as closed-die forgings. However, in true closed-die or flashless forging, flash does not form and the workpiece com-pletely fills the die cavity (right side of Fig. 4-7 (b). Accurate control of the volume of material and proper die design are essential in order to obtain a closed-die forging of the desired dimensions and tolerances. Undersize blanks prevent the complete filling of the die cavity; conversely, oversize blanks generate excessive pressures and may cause dies to fail prematurely or to jam.BeforeAfterPunchFlashTrimming dieSlugStationary punchFig. 4-6 Trimming flash from a forged partForging with flashFlashless forgingUpper dieUpper punchForgingBilletFlashLower dieDieLower punch(a) Start of stroke(b) End of strokeFig. 4-7 Comparison of closed-die forging to precision or flashless forging of a cylindrical billet4.3.1 Precision ForgingFor economic reasons the trend in forging operations today is toward greater precision, which reduces the number of additional finishing operations. Operations in which the part formed are close to the final dimensions of the desired component are known as near-net-shape or net-shape forging. In such a process, there is little excess material on the forged part, and it is subsequently removed (generally by trimming or grinding).In precision forging, special dies produce parts having greater accuracies than those from impression-die forging and requiring much less machining. The process requires higher-capacity equipment, because of the greater forces required to obtain fine details on the parts. Because of the relatively low forging loads and temperatures that they require, aluminum and magnesium alloys are particularly suitable for precision forging; also, little die wear takes place and the surface finish is good. Steels and titanium can also be precision-forged. Typical precision-forged products are gears, connecting rods, housings, and turbine blades.Precision forging requires special and more complex dies, precise control of the billets volume and shape, accurate positioning of the billet in the die cavity, and hence higher investment. However, less material is wasted, and much less subsequent machining is required, because the part is closer to the final desired shape. Thus, the choice between conventional forging and precision forging requires an economic analysis, particularly in regard to the production volume.4.3.2 CoiningCoining essentially is a closed-die forging process typically used in minting coins, medallions, and jewelry (Fig. 4-8 (a), (b). The slug is coined in a completely closed die cavity. In order to produce fine details the pressures required can be as high as five or six times the strength of the material, note, for example, the detail on newly minted coins. On some parts, several coining operations may be required. Lubricants cannot be applied in coining, because they can become entrapped in the die cavities and, being incompressible, prevent the full reproduction of die-surface details.The coining process is also used with forgings and with other products, to improve surface finish and to impart the desired dimensional accuracy. This process, called sizing, involves high pressures, with little change in part shape during sizing. Marking of parts with letters and numbers can be done rapidly by a process similar to coining.Retaining ringDie holder(a)Upper dieDie holder Workpiece Lower dieWorkpieceDie with depressions(b)Flat dieFig.4-8(a)Schematicillustrationofthecoiningprocess(b)AnexampleofacoiningoperationtoproduceanimpressionoftheletterEonablockofmetal4.4Forging-Die DesignThe design of forging dies requires knowledge of the strength and ductility of the workpiece material, its sensitivity to deformation rate and temperature, its frictional characteristics, and the shape and complexity of the workpiece. Die distortion under high forging loads is an importantconsideration, particularly if close tolerances are required.The most important rule in die design is the fact that the part will flow in the direction of least resistance. Thus the workpiece (intermediate shape) should be shaped so that it properly fills the die cavities. An example of the intermediate shapes for a connecting rod is shown in Fig. 4-9. The importance of preforming can be appreciated by noting how a piece of dough is preshaped to make a pie crust or how ground meat is preshaped to make a hamburger.TubeFig. 4-9 Swaging of tubes without a mandrel4.4.1 PreshapingIn a properly preshaped workpiece, the material should not flow easily into the flash, the grain flow pattern should be favorable, and excessive sliding at the workpiece-die interlaces should be minimized in order to reduce wear. Selection of shapes requires considerable experience and involves calculations of cross-sectional areas at each location in the forging.Computer-aided design techniques have been developed to expedite these calculations, as well as to predict the material-flow pattern in the die cavity and to predict the formation of defects. Because the material undergoes different degrees of deformation (and at different rates) in various regions in the die cavity, the mechanical properties depend on the particular location in the forging.4.4.2 Die Design FeaturesThe terminology for forging dies is shown in Fig. 4-10, and the significance of various features is described below. Some of these considerations are similar to those for casting. For most forgings, the parting line is usually at the largest cross-section of the part. For simple symmetrical shapes, the parting line is normally a straight line at the center of the forging, but for more complex shapes the line may not lie in a single plane. The dies are then designed in such a way that they lock during engagement, in order to avoid side thrust, balance forces, and maintain die alignment during forging.External and internal draft anglesFlash GutterRibParting line Web Fillet CornerLand Trim lineFig. 4-10 Standard terminology for various features of a typical impressionAfter sufficiently constraining lateral flow to ensure proper die filling, the flash material is allowed to flow into a gutter, so that the extra flash does not increase the forging load unnecessarily. A general guideline for flash clearance between dies is 3% of the maximum thickness of the forging. The length of the land is usually two to five times the flash thickness. Several gutter designs have been developed throughout the years.Draft angles are necessary in almost all forging dies, in order to facilitate the removal of the part from the die. Upon cooling, the forging shrinks both radially and longitudinally, so internaldraft angles are made larger than external ones. Internal angles are about 7to 10, externalangles about 3to 5.Selection of the proper radii for corners and fillets is important, in order to ensure smoothflow of the metal into the die cavity and to improve die life. Small radii are generally undesirable, because of their adverse effect on metal flow and their tendency to wear rapidly (as a result of stress concentration and thermal cycling). Small fillet radii also can cause fatigue cracking of the dies. As a general rule, these radii should be as large as can be permitted by the design of the forging.Instead of being made as one piece, dies may be assembled with die insets (Fig. 4-11), particularly for complex shapes; this alternative reduces the cost of making several similar dies. The inserts can be made of stronger and harder materials, and they can be changed easily in the case of wear or failure in a particular section of the die.Upper die blockInsertInsertWorkpiece Fig.4-11DieinsertsusedindiesforforginganautomotiveaxlehousingAswiththepatternsusedincasting,allowancesareprovidedinforging-diedesignbecausemachiningtheforgingmaybenecessarytoobtainfinaldesireddimensionsandsurfacefinish.Machiningallowanceshouldbeprovidedatflanges,atholes,andatmatingsurfaces.4.5Forging MachinesA variety of forging machines are in use, with a range of capacities, speeds, and speed- stroke characteristics. These machines are generally classified as presses or hammers.4.5.1 Presses1. Hydraulic PressesThese presses operate at constant speeds and are load limited, or load restricted. In other words, a press stops if the load required exceeds its capacity. Large amounts of energy can be transmitted to a workpiece by a constant load throughout a stroke, the speed of which can be controlled. Because forging in a hydraulic press takes longer than in other types of forging machines, the workpiece may cool rapidly unless the dies are heated. Compared to mechanical presses, hydraulic presses are slower and involve higher initial cost, but they require less maintenance.A hydraulic press typically consists of a frame with two or four columns, pistons, cylinders (Fig. 4-12 (a), rams, and hydraulic pumps driven by electric motors. The main landing-gear support beam for the Boeing 747 aircraft is forged in a 450-MN (50,000-ton) hydraulic press, shown in Fig. 4-12 (c) (with the part in the forefront). This part is made of a titanium alloy and weighs approximately 1350 kg (1.35 tons).2. Mechanical PressesThese presses are basically of either the crank or the eccentric type (Fig. 4-12 (b). The speed varies from a maximum at the center of the stroke to zero at the bottom of the stroke, so they are stroke limited. The energy in a mechanical press is generated by a large flywheel powered by an electric motor. A clutch engages the flywheel to an eccentric shaft. A connecting rod translates the rotary motion into a reciprocating linear motion. A knuckle-joint mechanical press is shown in Fig. 4-12 (c). Because of the linkage design, very high forces can be applied in this type of press (see also Fig. 4-12 (a).The force available in a mechanical press depends on the stroke position; it becomes extremely high at the bottom dead center. Thus proper setup is essential to avoid breaking the dies or equipment components. Mechanical presses have high production rates; they are easier to automate and require less operator skill than do other types of forging machines. Press capacitie operation is repeated until the forging is completed.Screw presses are used for various open-die and closed-die forging operations; they are particularly suitable for small production quantities and precision parts, such as turbine blades. Capacities range from 1.4 MN to 280 MN (160 tons to 31,500 tons).4.5.2 HammersHammers derive their energy from the potential energy of the ram, which is converted into kinetic energy (Fig. 4-12 (e); thus they are energy limited. Unlike hydraulic presses, they operate at high speeds, and the resulting low forming time minimizes the cooling of a hot forging. Low cooling rates allow the forging of complex shapes, particularly those with thin and deep recesses. To complete the forging, several successive blows are usually made in the same die. Hammers are available in a variety of designs; they are the most versatile and the least expensive type of forging equipment.1. Gravity Drop HammersIn the operation of this hammer, a process called drop forging, the energy is derived from the free-falling ram (the hammer shown in Fig. 4-12 (e) is known as a board hammer). The available energy of the hammer is the product of the rams weight and the height of its drop. Ram weighs range from 180 kg to 4500 kg, with energy capacities ranging up to 120 kJ.2. Power Drop HammersIn this hammer, the rams downstroke is accelerated by steam, air, or hydraulic pressure at about 750 kPa. Ram weighs range from 225 kg to as much as 22,500 kg, with energy capacities ranging up to 1150 kJ.3. Counterblow HammersThis hammer has two rams that simultaneously approach each other horizontally or vertically to forge the part. As in open-die forging operations, the part may be rotated between blows for proper shaping of the workpiece during forging. Counterblow hammers operate at high speeds and transmit less vibration to their bases. Capacities range up to 1200 kJ.4. High-Energy-Rate MachinesIn a high-energy-rate machine, the ram is accelerated by inert gas at high pressure, and the part is forged in one blow at a very high speed. Although there are several types of these machines, various problems associated with their operation and maintenance, with die breakage, and with safety considerations have greatly limited their actual use in forging plants.4.5.3 Selection of Forging MachinesSeveral considerations are important in the selection of forging machines: force or energy requirements; the size, shape and complexity of the forging; the strength of the workpiece material; and the sensitivity of the material to the rate of deformation. Additional factors include production rate, dimensional accuracy, maintenance, operating skills required, noise level, and cost.In general, presses are preferred for use with aluminum, magnesium, beryllium, bronze, and brass. Hammers are usually preferred for use with steels, titanium, copper, and refractory-metal alloys. A forging may also be made on two or more types of equipment, that is, first on a hammer, then on a hydraulic or mechanical press.(a)(b)(c)Core printsMechanical drawing of part(d)(e) Core boxesCore prints Cope pattern plateCore halves pasted together(f) FlaskGateDrag pattern plateRisersSprueCope ready for sand(g) (h)(i) Cope after ramming with sand and removing pattern, sprue, and risersDrag ready for sandDrag after removing pattern(j) Cope Drag(k) (l) (m)Drag with core set in placeClosing pinsCope and drag assembled ready for pouringCasting as removed from mold; heat treated Fig. 3-9 Schematic illustration of the sequence of operations for sand castingAlmost all commercially-used metals can be sand cast. The surface finish obtained is largely a function of the materials used in making the mold. Dimensional accuracy is not as good as that of other casting processes. However, intricate shapes can be cast by this process, such as cast-iron engine blocks and very large propellers for ocean liners. Sand casting can be economical for relatively small production runs, and equipment costs are generally low.The surface of castings is important in subsequent machining operations, because machi- nability can be adversely affected if the castings are not cleaned properly and sand particles remain on the surface. If regions of the casting have not formed properly or have formedincompletely, the defects may be repaired by filling them with weld metal. Sand-mold castings generally have rough, grainy surfaces, depending on the quality of the mold and the materials used.The casting may subsequently be heat-treated to improve certain properties needed for its intended service use; these processes are particularly important for steel castings. Finishing operations may involve machining straightening, or forging with dies to obtain final dimensions.Minor surface imperfections may also be filled with a metal-filled epoxy, especially for cast-iron castings because they are difficult to weld. Inspection is an important final step and is carried out to ensure that the casting meets all design and quality control requirements.第4章锻模4.1Introduction4.1介绍 Forging is a process in which the workpiece is shaped by compressive forces applied through various dies and tools. It is one of the oldest metalworking operations, dating back at least to 4000 B.C.perhaps as far back as 8000 B.C. Forging was first used to make jewelry, coins, and various implements by hammering metal with tools made of stone.锻造是通过各种模具和工具施加的压缩力来成形工件的过程。它是最古老的金属加工作业之一,至少可以追溯到公元前4000年也许早在公元前8000年,锻造首先是用石头制成的工具锤打金属制造珠宝、硬币和各种器具。 dun锻 zo造 sh是 tng通 gu过 g各 zhng种 m模 j具 h和 gng工 j具 sh施 ji加 de的 y压 su缩 l力 li来 chng成 xng形 gng工 jin件 de的 gu过 chng程 。 t它 sh是 zu最 g古 lo老 de的 jn金 sh属 ji加 gng工 zu作 y业 zh之 y一 , zh至 sho少 k可 y以 zhu追 s溯 do到 gng公 yun元 qin前 4 0 0 0 nin年 y也 x许 zo早 zi在 gng公 yun元 qin前 8 0 0 0 nin年 , dun锻 zo造 shu首 xin先 sh是 yng用 sh石 tou头 zh制 chng成 de的 gng工 j具 chu锤 d打 jn金 sh属 zh制 zo造 zh珠 bo宝 、 yng硬 b币 h和 g各 zhng种 q器 j具 。 Simple forging operations can be performed with a heavy hand hammer and an anvil, as was traditionally done by blacksmiths. Most forgings, however, require a set of dies and such equipment as a press or a forging hammer.简单的锻造操作可以用重手锤和砧,作为传统上是由铁匠。然而,大多数锻件需要一套模具和诸如压力机或锻锤之类的设备。 jin简 dn单 de的 dun锻 zo造 co操 zu作 k可 y以 yng用 zhng重 shu手 chu锤 h和 zhn砧 , zu作 wi为 chun传 tng统 shng上 sh是 yu由 ti铁 jing匠 。 rn然 r而 , d大 du多 sh数 dun锻 jin件 x需 yo要 y一 to套 m模 j具 h和 zh诸 r如 y压 l力 j机 hu或 dun锻 chu锤 zh之 li类 de的 sh设 bi备 。 Typical forged products are bolts and rivets, connecting rods, shafts for turbines, gears, hand tools, and structural components for machinery, aircraft, railroads, and a variety of other transportation equipment.典型的锻造产品有螺栓和铆钉、连杆、涡轮轴、齿轮、手动工具和机械、飞机、铁路和其他各种运输设备的结构部件。 din典 xng型 de的 dun锻 zo造 chn产 pn品 yu有 lu螺 shun栓 h和 mo铆 dng钉 、 lin连 gn杆 、 w涡 ln轮 zhu轴 、 ch齿 ln轮 、 shu手 dng动 gng工 j具 h和 j机 xi械 、 fi飞 j机 、 ti铁 l路 h和 q其 t他 g各 zhng种 yn运 sh输 sh设 bi备 de的 ji结 gu构 b部 jin件 。 Metal flow and grain structure can be controlled, so forged parts have good strength and toughness; they can be used reliably for highly stressed and critical applications (Fig. 4-1). Forg- ing may be done at room temperature (cold forging) or at elevated temperatures (warm or hot forging, depending on the temperature).金属流动和晶粒结构可以控制,所以锻造零件具有良好的强度和韧性,它们可以可靠地用于高应力和关键应用(图4-1)。青蛙-可在室温下进行(冷锻)或高温(热锻,这取决于温度)。(a)(b) (c)(a) (b) (c) Fig. 4-1 A part made by three different processes, showing grain flow图4-1由三个不同的过程组成的部分,显示了谷物的流动 (a)casting (b) machining (c) forging(a)铸造(b)机械加工(c)锻造 Because of the higher strength of the material, cold forging requires greater forces, and the workpiece materials must have sufficient ductility at room temperature. Cold-forged parts have good surface finish and dimensional accuracy. Hot forging requires smaller forces, but it由于材料强度较高,冷锻需要更大的力,工件材料在室温下必须具有足够的延性。冷锻零件表面光洁度好,尺寸精度高。热锻需要更小的力,但是 yu由 y于 ci材 lio料 qing强 d度 jio较 go高 , lng冷 dun锻 x需 yo要 gng更 d大 de的 l力 , gng工 jin件 ci材 lio料 zi在 sh室 wn温 xi下 b必 x须 j具 yu有 z足 gu够 de的 yn延 xng性 。 lng冷 dun锻 lng零 jin件 bio表 min面 gung光 ji洁 d度 ho好 , ch尺 cn寸 jng精 d度 go高 。 r热 dun锻 x需 yo要 gng更 xio小 de的 l力 , dn但 sh是 produces dimensional accuracy and surface finish that are not as good.生产尺寸精度和表面光洁度不太好。 shng生 chn产 ch尺 cn寸 jng精 d度 h和 bio表 min面 gung光 ji洁 d度 b不 ti太 ho好 。 Forgings generally require additional finishing operations, such as heat treating, to modify properties, and then machining to obtain accurate finished dimensions. These operations can be minimized by precision forging, which is an important example of the trend toward net-shape or near-net shape forming processes. This trend significantly reduces the number of operations required, and hence the manufacturing cost to make the final product.锻件一般需要额外的修整操作,如热处理,修改性能,然后加工以获得精确的成品尺寸。这些操作可以通过精密锻造来最小化,这是趋向网状或近净形成形过程的一个重要例子。这一趋势大大减少了所需的操作数量,从而降低了制造最终产品的成本。 dun锻 jin件 y一 bn般 x需 yo要 额 wi外 de的 xi修 zhng整 co操 zu作 , r如 r热 ch处 l理 , xi修 gi改 xng性 nng能 , rn然 hu后 ji加 gng工 y以 hu获 d得 jng精 qu确 de的 chng成 pn品 ch尺 cn寸 。 zh这 xi些 co操 zu作 k可 y以 tng通 gu过 jng精 m密 dun锻 zo造 li来 zu最 xio小 hu化 , zh这 sh是 q趋 xing向 wng网 zhung状 hu或 jn近 jng净 xng形 chng成 xng形 gu过 chng程 de的 y一 g个 zhng重 yo要 l例 zi子 。 zh这 y一 q趋 sh势 d大 d大 jin减 sho少 le了 su所 x需 de的 co操 zu作 sh数 ling量 , cng从 r而 jing降 d低 le了 zh制 zo造 zu最 zhng终 chn产 pn品 de的 chng成 bn本 。 There are several forms of forging, but there is some disparity identifying processes with names in different references.锻造有几种形式,但在不同的参考文献中识别名称的过程有一些差异。 the temperature).温度)。4.2开式冲模锻造 4 . 2 o p e n - d i e dun锻 zo造 Open-die forging is the simplest forging process. Although most open-die forging generally weighs 15 kg500 kg, forging as heavy as 300 tons have been made. Sizes may range from very small parts up to shafts some 23 m long (in the case of ship propellers).开式模锻是最简单的锻造工艺。虽然大多数开式模锻一般重量为15公斤500公斤,但锻造量达300吨。尺寸可以从非常小的部分到23米长的轴(在船螺旋桨的情况下)。 ki开 sh式 m模 dun锻 sh是 zu最 jin简 dn单 de的 dun锻 zo造 gng工 y艺 。 su虽 rn然 d大 du多 sh数 ki开 sh式 m模 dun锻 y一 bn般 zhng重 ling量 wi为 1 5 gng公 jn斤 5 0 0 gng公 jn斤 , dn但 dun锻 zo造 ling量 d达 3 0 0 dn吨 。 ch尺 cn寸 k可 y以 cng从 fi非 chng常 xio小 de的 b部 fen分 do到 2 3 m米 chng长 de的 zhu轴 ( zi在 chun船 lu螺 xun旋 jing桨 de的 qng情 kung况 xi下 ) 。 The open-die forging process can be depicted by a solid workpiece placed between two flat dies and reduced in height by compressing it (Fig. 4-2). This process is also called upsetting or flat-die forging. The die surfaces in open-die forging may have simple cavities, to produce relatively simple forgings. The deformation of the workpiece under ideal conditions is shown in Fig. 4-2 (b). Because constancy of volume is maintained, any reduction in height increases the diameter of the forged part.开式模锻过程可以由一个实心工件放置两平模和压缩它的高度降低了(图4-2)之间。这个过程也称为镦粗或平模锻造。开式模锻中的模具表面可能有简单的腔,以产生相对简单的锻件。在理想条件下,工件的变形如图4-2所示(B)。由于体积恒定,任何高度的减少都会增加锻件的直径。 ki开 sh式 m模 dun锻 gu过 chng程 k可 y以 yu由 y一 g个 sh实 xn心 gng工 jin件 fng放 zh置 ling两 png平 m模 h和 y压 su缩 t它 de的 go高 d度 jing降 d低 le了 ( t图 4 - 2 ) zh之 jin间 。 zh这 ge个 gu过 chng程 y也 chng称 wi为 du镦 c粗 hu或 png平 m模 dun锻 zo造 。 ki开 sh式 m模 dun锻 zhng中 de的 m模 j具 bio表 min面 k可 nng能 yu有 jin简 dn单 de的 qing腔 , y以 chn产 shng生 xing相 du对 jin简 dn单 de的 dun锻 jin件 。 zi在 l理 xing想 tio条 jin件 xi下 , gng工 jin件 de的 bin变 xng形 r如 t图 4 - 2 su所 sh示 ( B ) 。 yu由 y于 t体 j积 hng恒 dng定 , rn任 h何 go高 d度 de的 jin减 sho少 du都 hu会 zng增 ji加 dun锻 jin件 de的 zh直 jng径 。 Note that, in Fig. 4-2 (b), the workpiece is deformed uniformly. In actual operations, the part develops a barrel shape (Fig. 4-2 (c); this deformation is also known as pancaking. Barreling is caused primarily by frictional forces at the die-workpiece interfaces that oppose the注意,在图4-2(B),工件变形均匀。在实际操作中,部分开发了一个桶形(图4-2(C);这种变形也被称为塌。从主要由摩擦力在模具工件界面,反对造成的 zh注 y意 , zi在 t图 4 - 2 ( B ) , gng工 jin件 bin变 xng形 jn均 yn匀 。 zi在 sh实 j际 co操 zu作 zhng中 , b部 fen分 ki开 f发 le了 y一 g个 tng桶 xng形 ( t图 4 - 2 ( C ) ) ; zh这 zhng种 bin变 xng形 y也 bi被 chng称 wi为 t塌 。 cng从 zh主 yo要 yu由 m摩 c擦 l力 zi在 m模 j具 gng工 jin件 ji界 min面 , fn反 du对 zo造 chng成 de的 outward flow of the materials at these interfaces. Barreling can be minimized if an effective lubricant is used.材料在这些界面上的向外流动。横冲直撞,可如果一个有效的润滑剂用于最小化。 ci材 lio料 zi在 zh这 xi些 ji界 min面 shng上 de的 xing向 wi外 li流 dng动 。 hng横 chng冲 zh直 zhung撞 , k可 r如 gu果 y一 g个 yu有 xio效 de的 rn润 hu滑 j剂 yng用 y于 zu最 xio小 hu化 。 Workpiece hng横 chng冲 zh直 zhung撞 Fig. 4-2 (a) Solid cylindrical billet upset between two flat dies (b) Uniform deformation of the billet without friction (c) Deformation with friction图4-2(一)固体圆柱坯打乱两平模之间(B)铸坯的均匀变形无摩擦(C)变形与摩擦 t图 4 - 2 ( y一 ) g固 t体 yun圆 zh柱 p坯 d打 lun乱 ling两 png平 m模 zh之 jin间 ( B ) zh铸 p坯 de的 jn均 yn匀 bin变 xng形 w无 m摩 c擦 ( C ) bin变 xng形 y与 m摩 c擦 Barreling can also occur in upsetting hot workpieces between cold dies. The material at and near the interfaces cools rapidly, while the rest of the workpiece remains relatively hot. Thus, the material at the ends of the workpiece has higher resistance to deformation than the material at its center. Consequently, the central portion of the workpiece expands laterally to a greater extent than do its ends. Barreling from thermal effects can be reduced or eliminated by using heated dies; thermal barriers such as glass cloth at the die-workpiece interfaces are also used.横冲直撞,也可以在热镦模具工件之间发生冷。在界面处和附近的材料冷却迅速,而工件的其余部分保持相对热。因此,工件末端的材料比其中心的材料具有更高的抗变形能力。因此,工件的中心部分在横向上比其末端扩展得更大。横冲直撞,从热效应可以通过加热模具减少或消除;如在模具工件界面玻璃布还用热屏障。 hng横 chng冲 zh直 zhung撞 , y也 k可 y以 zi在 r热 du镦 m模 j具 gng工 jin件 zh之 jin间 f发 shng生 lng冷 。 zi在 ji界 min面 ch处 h和 f附 jn近 de的 ci材 lio料 lng冷 qu却 xn迅 s速 , r而 gng工 jin件 de的 q其 y余 b部 fen分 bo保 ch持 xing相 du对 r热 。 yn因 c此 , gng工 jin件 m末 dun端 de的 ci材 lio料 b比 q其 zhng中 xn心 de的 ci材 lio料 j具 yu有 gng更 go高 de的 kng抗 bin变 xng形 nng能 l力 。 yn因 c此 , gng工 jin件 de的 zhng中 xn心 b部 fen分 zi在 hng横 xing向 shng上 b比 q其 m末 dun端 ku扩 zhn展 de得 gng更 d大 。 hng横 chng冲 zh直 zhung撞 , cng从 r热 xio效 yng应 k可 y以 tng通 gu过 ji加 r热 m模 j具 jin减 sho少 hu或 xio消 ch除 ; r如 zi在 m模 j具 gng工 jin件 ji界 min面 b玻 li璃 b布 hi还 yng用 r热 png屏 zhng障 。 Fig. 4-3 Two views of a cogging operation on a rectangular bar. Blacksmiths use this process to reduce the thickness of bars by hammering the part on an anvil一个齿槽的操作在矩形条意见图4-3两。使用此过程通过锤打铁匠的铁砧上减少部分钢筋的厚度 y一 g个 ch齿 co槽 de的 co操 zu作 zi在 j矩 xng形 tio条 y意 jin见 t图 4 - 3 ling两 。 sh使 yng用 c此 gu过 chng程 tng通 gu过 chu锤 d打 ti铁 jing匠 de的 ti铁 zhn砧 shng上 jin减 sho少 b部 fen分 gng钢 jn筋 de的 hu厚 d度 Cogging, also called drawing out, is basically an open-die forging operation in which the thickness of a bar is reduced by successive forging steps at specific intervals (Fig. 4-3). Because the contact area per stroke is small, a long section of a bar can be reduced in thickness without requiring large forces or machinery. Blacksmiths perform such operations with a hammer and an anvil using hot pieces of metal; iron fences of various designs are often made by this process.齿槽,也叫画出来的,基本上是开式模锻操作中的一条的厚度是由连续的锻造步骤在特定的时间间隔减少(图4-3)。由于每一行程的接触面积小,所以可以在不需要大的力或机械的情况下,降低棒的长截面厚度。铁匠用铁锤进行这样的操作,使用热的金属片砧;各种设计的铁栅栏通常是由这种工艺制成的。4.3打印和闭模锻造 4 . 3 i m p r e s s i o n - d i e h和 b闭 m模 dun锻 zo造 In impression-die forging, the workpiece acquires the shape of the die cavities (impressions) while being forged between two shaped dies (Fig. 4-4). Note that some of the material flows outward and forms a flash. The flash has a significant role in flow of material in impression-die forging: The thin flash cools rapidly, and, because of its frictional resistance, it subjects the material in the die cavity to high pressures, thereby encouraging the filling of the die cavity.在锻模,工件获得模腔形状(印象)而伪造两形模之间(图4-4)。注意一些物质向外流动形成一个闪光。在压印模锻件中,闪光在材料流动中起着重要作用:薄闪光迅速冷却,由于摩擦阻力,它将模腔中的材料施加到高压,从而鼓励模腔的填充。Fig. 4-4 Stages in impression-die forging of a solid round billet图4-4阶段印象中死于一个实心圆坯锻造 The blank to be forged is prepared by such means as (a) cutting or cropping from an extruded or drawn bar stock, (b) a preform in operations such as powder metallurgy, (c) casting, or (d) a preform blank in a prior forging operation. The blank is placed on the lower die and, as the upper die begins to descend, the blanks shape gradually changes, as is shown for the forging of a connecting rod in Fig. 4-5 (a).待锻坯料是通过以下方式制备的:(a)从挤压或拉制的棒材中剪切或加工;(b)在粉末冶金、(c)铸造或(d)在现有锻造操作中的预制坯坯料中的预制件。坯料被放置在下模上,当上模开始下降时,坯料的形状逐渐改变,如图4-5(a)中连杆的锻造所示。 Workpiece Die工件的模具 Fig. 4-5 (a) Stages in forging a connecting rod for an internal combustion engine (b) Fullering图4-5(a)在锻造一个内燃机连杆阶段(B)捻缝 (c)Edging operations to distribute the material when preshaping the blank for forging(C)边操作分发材料预成型毛坯锻造时 Preforming processes, such as fullering and edging (Figs. 4-5 (b) and (c), are used to distribute the material into various regions of the blank, much as they are in shaping dough to make pastry. In fullering, material is distributed away from an area; in edging, it is gathered into a localized area. The part is then formed into the rough shape of a connecting rod by a process called blocking, using blocker dies. The final operation is the finishing of the forging in impression dies that give the forging its final shape. The flash is removed usually by a trimming operation (Fig. 4-6).预成型过程,如捻缝和边(图。4-5(b)和(c),是用来分发材料的空白区域,就像他们在塑造面团做糕点。在锤击,材料分布离区;边,这是聚集在局部地区。然后用阻塞模的方法将零件成形成连杆的毛坯形状。最后的操作是锻模锻模的终锻,使锻件达到最终形状。闪光灯通常是通过修剪操作去除的(图4-6)。 y预 chng成 xng型 gu过 chng程 , r如 nin捻 fng缝 h和 bin边 ( t图 。 4 - 5 ( b ) h和 ( c ) , sh是 yng用 li来 fn分 f发 ci材 lio料 de的 kng空 bi白 q区 y域 , ji就 xing像 t他 men们 zi在 s塑 zo造 min面 tun团 zu做 go糕 din点 。 zi在 chu锤 j击 , ci材 lio料 fn分 b布 l离 q区 ; bin边 , zh这 sh是 j聚 j集 zi在 j局 b部 d地 q区 。 rn然 hu后 yng用 z阻 s塞 m模 de的 fng方 f法 jing将 lng零 jin件 chng成 xng形 chng成 lin连 gn杆 de的 mo毛 p坯 xng形 zhung状 。 zu最 hu后 de的 co操 zu作 sh是 dun锻 m模 dun锻 m模 de的 zhng终 dun锻 , sh使 dun锻 jin件 d达 do到 zu最 zhng终 xng形 zhung状 。 shn闪 gung光 dng灯 tng通 chng常 sh是 tng通 gu过 xi修 jin剪 co操 zu作 q去 ch除 de的 ( t图 4 - 6 ) 。 The examples shown in Figs. 4-4 and 4-5 (a) are also referred to as closed-die forgings. However, in true closed-die or flashless forging, flash does not form and the workpiece com-图中所示的示例。4-4、4-5(一)也被称为闭模锻造。然而,在真正的闭模或闭式模锻,闪不形式和工件的COM pletely fills the die cavity (right side of Fig. 4-7 (b). Accurate control of the volume of material and proper die design are essential in order to obtain a closed-die forging of the desired dimensions and tolerances. Undersize blanks prevent the complete filling of the die cavity; conversely, oversize blanks generate excessive pressures and may cause dies to fail prematurely or to jam.完全充满模腔(图4-7右侧(B)。为了获得所需尺寸和公差的闭式模锻,必须精确控制材料的体积和适当的模具设计。小的空白,防止模腔完全填充;相反,特大型坯产生过度的压力,可能会造成模具过早失效或堵塞。 (a)Start of stroke (b) End of stroke(a)开始冲程(b)冲程结束 ( a ) ki开 sh始 chng冲 chng程 ( b ) chng冲 chng程 ji结 sh束 Fig. 4-7 Comparison of closed-die forging to precision or flashless forging of a cylindrical billet图4-7闭模锻造的毛坯精度或闭式模锻比较 4.3.1Precision Forging4.3.精度锻造 4 . 3 . 1 p r e c i s i o n dun锻 zo造 For economic reasons the trend in forging operations today is toward greater precision, which reduces the number of additional finishing operations. Operations in which the part formed are close to the final dimensions of the desired component are known as near-net-shape or net-shape forging. In such a process, there is little excess material on the forged part, and it is subsequently removed (generally by trimming or grinding).由于经济原因,今天锻造操作的趋势是提高精度,从而减少额外的精加工工序。零件所形成的操作接近所需元件的最终尺寸,称为近净形或网状锻件。在这样的过程中,锻造零件上几乎没有多余的材料,随后被去除(通常是通过修整或打磨)。 yu由 y于 jng经 j济 yun原 yn因 , jn今 tin天 dun锻 zo造 co操 zu作 de的 q趋 sh势 sh是 t提 go高 jng精 d度 , cng从 r而 jin减 sho少 额 wi外 de的 jng精 ji加 gng工 gng工 x序 。 lng零 jin件 su所 xng形 chng成 de的 co操 zu作 ji接 jn近 su所 x需 yun元 jin件 de的 zu最 zhng终 ch尺 cn寸 , chng称 wi为 jn近 jng净 xng形 hu或 wng网 zhung状 dun锻 jin件 。 zi在 zh这 yng样 de的 gu过 chng程 zhng中 , dun锻 zo造 lng零 jin件 shng上 j几 h乎 mi没 yu有 du多 y余 de的 ci材 lio料 , su随 hu后 bi被 q去 ch除 ( tng通 chng常 sh是 tng通 gu过 xi修 zhng整 hu或 d打 m磨 ) 。 In precision forging, special dies produce parts having greater accuracies than those from impression-die forging and requiring much less machining. The process requires higher-capacity equipment, because of the greater forces required to obtain fine details on the parts. Because of the relatively low forging loads and temperatures that they require, aluminum and magnesium alloys are particularly suitable for precision forging; also, little die wear takes place and the surface finish is good. Steels and titanium can also be precision-forged. Typical precision-forged products are gears, connecting rods, housings, and turbine blades.在精密锻造中,特殊模具制造的零件比压印模锻件的精度更高,而且需要更少的机械加工。这个过程需要更高容量的设备,因为要获得零件上的细节需要更大的力。由于锻件所需的锻造载荷和温度相对较低,铝和镁合金特别适合于精密锻造,而且模具磨损小,表面光洁度好。钢和钛也可以精密锻造。典型的精密锻造产品有齿轮、连杆、轴承座和涡轮叶片。 zi在 jng精 m密 dun锻 zo造 zhng中 , t特 sh殊 m模 j具 zh制 zo造 de的 lng零 jin件 b比 y压 yn印 m模 dun锻 jin件 de的 jng精 d度 gng更 go高 , r而 qi且 x需 yo要 gng更 sho少 de的 j机 xi械 ji加 gng工 。 zh这 ge个 gu过 chng程 x需 yo要 gng更 go高 rng容 ling量 de的 sh设 bi备 , yn因 wi为 yo要 hu获 d得 lng零 jin件 shng上 de的 x细 ji节 x需 yo要 gng更 d大 de的 l力 。 yu由 y于 dun锻 jin件 su所 x需 de的 dun锻 zo造 zi载 h荷 h和 wn温 d度 xing相 du对 jio较 d低 , l铝 h和 mi镁 h合 jn金 t特 bi别 sh适 h合 y于 jng精 m密 dun锻 zo造 , r而 qi且 m模 j具 m磨 sn损 xio小 , bio表 min面 gung光 ji洁 d度 ho好 。 gng钢 h和 ti钛 y也 k可 y以 jng精 m密 dun锻 zo造 。 din典 xng型 de的 jng精 m密 dun锻 zo造 chn产 pn品 yu有 ch齿 ln轮 、 lin连 gn杆 、 zhu轴 chng承 zu座 h和 w涡 ln轮 y叶 pin片 。 Precision forging requires special and more complex dies, precise control of the billets volume and shape, accurate positioning of the billet in the die cavity, and hence higher investment. However, less material is wasted, and much less subsequent machining is required, because the part is closer to the final desired shape. Thus, the choice between conventional forging and precision forging requires an economic analysis, particularly in regard to the production volume.精密锻造需要特殊和复杂的模具,精确控制坯料的体积和形状,精确地定位模腔内的坯料,从而提高投资。然而,较少的材料被浪费,而且更少的后续加工是必需的,因为零件接近最终的期望形状。因此,传统锻造和精密锻造之间的选择需要进行经济分析,特别是在生产量方面。 4.3.2Coining4.3.2压印4 . 3 . 2 c o i n i n g Coining essentially is a closed-die forging process typically used in minting coins, medallions, and jewelry (Fig. 4-8 (a), (b). The slug is coined in a completely closed die cavity. In order to produce fine details the pressures required can be as high as five or six times the strength of the material, note, for example, the detail on newly minted coins. On some parts, several coining operations may be required. Lubricants cannot be applied in coining, because they can become entrapped in the die cavities and, being incompressible, prevent the full reproduction of die-surface details.创造本质上是一个闭式模锻过程通常用于铸造硬币,奖章和首饰(图4-8(a)、(b)。蛞蝓是在完全封闭的模腔中制造的。为了产生精细的细节,所需的压力可以高达材料强度的五倍或六倍,例如,说明新铸造硬币的细节。在一些地区,一些整形手术可能需要。润滑油不能用于创造,因为他们可以成为被困在死腔,是不可压缩的,防止模具表面细节的再现。 chung创 zo造 bn本 zh质 shng上 sh是 y一 g个 b闭 sh式 m模 dun锻 gu过 chng程 tng通 chng常 yng用 y于 zh铸 zo造 yng硬 b币 , jing奖 zhng章 h和 shu首 sh饰 ( t图 4 - 8 ( a ) 、 ( b ) ) 。 ku蛞 y蝓 sh是 zi在 wn完 qun全 fng封 b闭 de的 m模 qing腔 zhng中 zh制 zo造 de的 。 wi为 le了 chn产 shng生 jng精 x细 de的 x细 ji节 , su所 x需 de的 y压 l力 k可 y以 go高 d达 ci材 lio料 qing强 d度 de的 w五 bi倍 hu或 li六 bi倍 , l例 r如 , shu说 mng明 xn新 zh铸 zo造 yng硬 b币 de的 x细 ji节 。 zi在 y一 xi些 d地 q区 , y一 xi些 zhng整 xng形 shu手 sh术 k可 nng能 x需 yo要 。 rn润 hu滑 yu油 b不 nng能 yng用 y于 chung创 zo造 , yn因 wi为 t他 men们 k可 y以 chng成 wi为 bi被 kn困 zi在 s死 qing腔 , sh是 b不 k可 y压 su缩 de的 , fng防 zh止 m模 j具 bio表 min面 x细 ji节 de的 zi再 xin现 。 The coining process is also used with forgings and with other products, to improve surface finish and to impart the desired dimensional accuracy. This process, called sizing, involves high pressures, with little change in part shape during sizing. Marking of parts with letters and num压印的过程也是用锻件和其他产品,以提高表面光洁度和产生所需的尺寸精度。这个过程称为上浆,涉及到高压,在上浆过程中零件形状几乎没有变化。用字母和数字标注零件 4.4锻模设计 The design of forging dies requires knowledge of the strength and ductility of the workpiece material, its sensitivity to deformation rate and temperature, its frictional characteristics, and the shape and complexity of the workpiece. Die distortion under high forging loads is an important锻模的设计需要了解工件材料的强度和延展性、对变形速率和温度的敏感性、摩擦特性以及工件的形状和复杂程度。高锻载荷下的模具变形是重要的。 consideration, particularly if close tolerances are required.考虑,特别是如果需要接近公差的话。 ko考 l虑 , t特 bi别 sh是 r如 gu果 x需 yo要 ji接 jn近 gng公 ch差 de的 hu话 。 The most important rule in die design is the fact that the part will flow in the direction of least resistance. Thus the workpiece (intermediate shape) should be shaped so that it properly fills the die cavities. An example of the intermediate shapes for a connecting rod is shown in Fig. 4-9. The importance of preforming can be appreciated by noting how a piece of dough is preshaped to make a pie crust or how ground meat is preshaped to make a hamburger.模具设计中最重要的原则是零件朝最小阻力方向流动。因此,工件(中间形状)应该成形,以便正确填充模具腔。一个连杆的中间形状如图4-9所示。预成型的重要性可以被注意到一块面团成形做馅饼皮或如何使用地面肉来做汉堡。 4.4.1Preshaping4.4.1预成型 4 . 4 . 1 p r e s h a p i n g In a properly preshaped workpiece, the material should not flow easily into the flash, the grain flow pattern should be favorable, and excessive sliding at the workpiece-die interlaces should be minimized in order to reduce wear. Selection of shapes requires considerable experience and involves calculations of cross-sectional areas at each location in the forging.在一个适当的预成型件,材料不易流到Flash,粮食流通模式应该是有利的,而过度的滑动在工件模具把应该最小化以减少磨损。形状的选择需要相当丰富的经验,涉及到在锻造中每个位置的横截面积的计算。 zi在 y一 g个 sh适 dng当 de的 y预 chng成 xng型 jin件 , ci材 lio料 b不 y易 li流 do到 F l a s h , ling粮 shi食 li流 tng通 m模 sh式 yng应 gi该 sh是 yu有 l利 de的 , r而 gu过 d度 de的 hu滑 dng动 zi在 gng工 jin件 m模 j具 b把 yng应 gi该 zu最 xio小 hu化 y以 jin减 sho少 m磨 sn损 。 xng形 zhung状 de的 xun选 z择 x需 yo要 xing相 dng当 fng丰 f富 de的 jng经 yn验 , sh涉 j及 do到 zi在 dun锻 zo造 zhng中 mi每 g个 wi位 zhi置 de的 hng横 ji截 min面 j积 de的 j计 sun算 。 Computer-aided design techniques have been developed to expedite these calculations, as well as to predict the material-flow pattern in the die cavity and to predict the formation of defects. Because the material undergoes different degrees of deformation (and at different rates) in various regions in the die cavity, the mechanical properties depend on the particular location in the forging.计算机辅助设计技术已经发展,以加快这些计算,以及预测在模具腔的材料流动模式,并预测缺陷的形成。由于材料在模腔的不同区域发生不同程度的变形(以不同的速度),其力学性能取决于锻造中的特定位置。 4.4.2Die Design Features4.4.2设计特点 4 . 4 . 2 d i e sh设 j计 t特 din点 The terminology for forging dies is shown in Fig. 4-10, and the significance of various features is described below. Some of these considerations are similar to those for casting. For most forgings, the parting line is usually at the largest cross-section of the part. For simple symmetrical shapes, the parting line is normally a straight line at the center of the forging, but for more complex shapes the line may not lie in a single plane. The dies are then designed in such a way that they lock during engagement, in order to avoid side thrust, balance forces, and maintain锻模的术语如图4-10所示,以及各种功能的意义如下。其中一些考虑与铸造相似。对于大多数锻件,分型线通常在零件的最大横截面上。对于简单的对称形状,分型线通常是锻造中心的一条直线,但对于更复杂的形状,该线不可能位于一个平面内。模具是这样设计的,它们在接合期间锁定,以避免侧向推力、平衡力和保持。 Fig. 4-10 Standard terminology for various features of a typical impression图4-10标准术语,一个典型的印象的各种特征 After sufficiently constraining lateral flow to ensure proper die filling, the flash material is allowed to flow into a gutter, so that the extra flash does not increase the forging load unnecessarily. A general guideline for flash clearance between dies is 3% of the maximum thickness of the forging. The length of the land is usually two to five times the flash thickness. Several gutter designs have been developed throughout the years.在充分限制侧向流动以确保适当的模具填充后,闪蒸材料允许流入排水沟,这样额外的闪蒸不会增加锻造负荷。模具间隙的一般准则是锻件最大厚度的3%。土地的长度通常是闪光厚度的两到五倍。多年来开发了几种排水沟设计。 zi在 chng充 fn分 xin限 zh制 c侧 xing向 li流 dng动 y以 qu确 bo保 sh适 dng当 de的 m模 j具 tin填 chng充 hu后 , shn闪 zhng蒸 ci材 lio料 yn允 x许 li流 r入 pi排 shu水 gu沟 , zh这 yng样 额 wi外 de的 shn闪 zhng蒸 b不 hu会 zng增 ji加 dun锻 zo造 f负 h荷 。 m模 j具 jin间 x隙 de的 y一 bn般 zhn准 z则 sh是 dun锻 jin件 zu最 d大 hu厚 d度 de的 3 % 。 t土 d地 de的 chng长 d度 tng通 chng常 sh是 shn闪 gung光 hu厚 d度 de的 ling两 do到 w五 bi倍 。 du多 nin年 li来 ki开 f发 le了 j几 zhng种 pi排 shu水 gu沟 sh设 j计 。 Draft angles are necessary in almost all forging dies, in order to facilitate the removal of the part from the die. Upon cooling, the forging shrinks both radially and longitudinally, so internal在几乎所有的锻模中都必须有斜度,以便于从模具中拆卸零件。当冷却时,锻件径向和纵向收缩,因此内部。 zi在 j几 h乎 su所 yu有 de的 dun锻 m模 zhng中 du都 b必 x须 yu有 xi斜 d度 , y以 bin便 y于 cng从 m模 j具 zhng中 chi拆 xi卸 lng零 jin件 。 dng当 lng冷 qu却 sh时 , dun锻 jin件 jng径 xing向 h和 zng纵 xing向 shu收 su缩 , yn因 c此 ni内 b部 。 draft angles are made larger than external ones. Internal angles are about 7to 10, external斜度比外角大。内角约为7到10,外部 大约3到5的角度。 d大 yu约 3 do到 5 de的 jio角 d度 。 Selection of the proper radii for corners and fillets is important, in order to ensure smooth选择圆角和圆角的适当半径是很重要的,以确保平滑。 xun选 z择 yun圆 jio角 h和 yun圆 jio角 de的 sh适 dng当 bn半 jng径 sh是 hn很 zhng重 yo要 de的 , y以 qu确 bo保 png平 hu滑 。 flow of the metal into the die cavity and to improve die life. Small radii are generally undesirable, because of their adverse effect on metal flow and their tendency to wear rapidly (as a result of stress concentration and thermal cycling). Small fillet radii also can cause fatigue cracking of the dies. As a general rule, these radii should be as large as can be permitted by the design of the forging.将金属流入模具腔并提高模具寿命。小半径通常是不可取的,因为它们对金属流动的不利影响和他们的倾向迅速磨损(由于应力集中和热循环)。圆角半径小也会导致模具疲劳开裂。一般来说,这些半径应该和锻造设计所允许的一样大。 jing将 jn金 sh属 li流 r入 m模 j具 qing腔 bng并 t提 go高 m模 j具 shu寿 mng命 。 xio小 bn半 jng径 tng通 chng常 sh是 b不 k可 q取 de的 , yn因 wi为 t它 men们 du对 jn金 sh属 li流 dng动 de的 b不 l利 yng影 xing响 h和 t他 men们 de的 qng倾 xing向 xn迅 s速 m磨 sn损 ( yu由 y于 yng应 l力 j集 zhng中 h和 r热 xn循 hun环 ) 。 yun圆 jio角 bn半 jng径 xio小 y也 hu会 do导 zh致 m模 j具 p疲 lo劳 ki开 li裂 。 y一 bn般 li来 shu说 , zh这 xi些 bn半 jng径 yng应 gi该 h和 dun锻 zo造 sh设 j计 su所 yn允 x许 de的 y一 yng样 d大 。 Instead of being made as one piece, dies may be assembled with die insets (Fig. 4-11), particularly for complex shapes; this alternative reduces the cost of making several similar dies. The inserts can be made of stronger and harder materials, and they can be changed easily in the case of wear or failure in a particular section of the die.而不是作为一件,模具可组装模具镶(图4-11),特别是复杂形状;这种替代降低了几个类似的模具成本。刀片可以用更坚固、更硬的材料制成,在模具的特定部分磨损或失效时,它们可以容易地更换。 r而 b不 sh是 zu作 wi为 y一 jin件 , m模 j具 k可 z组 zhung装 m模 j具 xing镶 ( t图 4 - 1 1 ) , t特 bi别 sh是 f复 z杂 xng形 zhung状 ; zh这 zhng种 t替 di代 jing降 d低 le了 j几 g个 li类 s似 de的 m模 j具 chng成 bn本 。 do刀 pin片 k可 y以 yng用 gng更 jin坚 g固 、 gng更 yng硬 de的 ci材 lio料 zh制 chng成 , zi在 m模 j具 de的 t特 dng定 b部 fen分 m磨 sn损 hu或 sh失 xio效 sh时 , t它 men们 k可 y以 rng容 y易 de地 gng更 hun换 。 Fig. 4-11 Die inserts used in dies for forging an automotive axle housing图4-11模具在模具锻造汽车桥壳 As with the patterns used in casting, allowances are provided in forging-die design because machining the forging may be necessary to obtain final desired dimensions and surface finish. Machining allowance should be provided at flanges, at holes, and at mating surfaces.如同在铸造中使用的图案一样,在锻造模具设计中提供了余量,因为加工锻造可能是获得最终理想尺寸和表面光洁度所必需的。加工余量应在法兰、孔和配合面上提供。 4.5锻造机 A variety of forging machines are in use, with a range of capacities, speeds, and speed- stroke characteristics. These machines are generally classified as presses or hammers.各种锻造机正在使用,具有各种能力、速度和速度特性。这些机器一般分为压力机和铁锤。 4.5.1Presses4.5.1压机4 . 5 . 1 p r e s s e s 1.Hydraulic Presses1、液压机 1 、 y液 y压 j机 These presses operate at constant speeds and are load limited, or load restricted. In other words, a press stops if the load required exceeds its capacity. Large amounts of energy can be transmitted to a workpiece by a constant load throughout a stroke, the speed of which can be controlled. Because forging in a hydraulic press takes longer than in other types of forging machines, the workpiece may cool rapidly unless the dies are heated. Compared to mechanical presses, hydraulic presses are slower and involve higher initial cost, but they require less maintenance.这些压力机在恒定速度下工作,负载受限,或负载受限。换句话说,如果所需负载超过容量,则按下停止。在一次行程中,可以通过恒定的负载将大量的能量传递给工件,其速度可以控制。由于液压机锻造比其他类型的锻造机要长,工件可能很快冷却,除非模具被加热。与机械压力机相比,液压机速度较慢,涉及更高的初始成本,但需要较少的维护。 zh这 xi些 y压 l力 j机 zi在 hng恒 dng定 s速 d度 xi下 gng工 zu作 , f负 zi载 shu受 xin限 , hu或 f负 zi载 shu受 xin限 。 hun换 j句 hu话 shu说 , r如 gu果 su所 x需 f负 zi载 cho超 gu过 rng容 ling量 , z则 n按 xi下 tng停 zh止 。 zi在 y一 c次 xng行 chng程 zhng中 , k可 y以 tng通 gu过 hng恒 dng定 de的 f负 zi载 jing将 d大 ling量 de的 nng能 ling量 chun传 d递 gi给 gng工 jin件 , q其 s速 d度 k可 y以 kng控 zh制 。 yu由 y于 y液 y压 j机 dun锻 zo造 b比 q其 t他 li类 xng型 de的 dun锻 zo造 j机 yo要 chng长 , gng工 jin件 k可 nng能 hn很 kui快 lng冷 qu却 , ch除 fi非 m模 j具 bi被 ji加 r热 。 y与 j机 xi械 y压 l力 j机 xing相 b比 , y液 y压 j机 s速 d度 jio较 mn慢 , sh涉 j及 gng更 go高 de的 ch初 sh始 chng成 bn本 , dn但 x需 yo要 jio较 sho少 de的 wi维 h护 。 A hydraulic press typically consists of a frame with two or four columns, pistons, cylinders (Fig. 4-12 (a), rams, and hydraulic pumps driven by electric motors. The main landing-gear support beam for the Boeing 747 aircraft is forged in a 450-MN (50,000-ton) hydraulic press, shown in Fig. 4-12 (c) (with the part in the forefront). This part is made of a titanium alloy and weighs approximately 1350 kg (1.35 tons).液压机一般由机架两或四柱、活塞、缸(图4-12(一),公羊,和液压泵由电动机驱动。对于波音747飞机主起落架支撑梁在450-mn锻造液压机(50000吨),如图4-12所示(C)(有部分在前列)。该零件由钛合金制成,重量约为1350公斤(1.35吨)。 y液 y压 j机 y一 bn般 yu由 j机 ji架 ling两 hu或 s四 zh柱 、 hu活 si塞 、 gng缸 ( t图 4 - 1 2 ( y一 ) ) , gng公 yng羊 , h和 y液 y压 bng泵 yu由 din电 dng动 j机 q驱 dng动 。 du对 y于 b波 yn音 7 4 7 fi飞 j机 zh主 q起 lu落 ji架 zh支 chng撑 ling梁 zi在 4 5 0 - m n dun锻 zo造 y液 y压 j机 ( 5 0 0 0 0 dn吨 ) , r如 t图 4 - 1 2 su所 sh示 ( C ) ( yu有 b部 fen分 zi在 qin前 li列 ) 。 gi该 lng零 jin件 yu由 ti钛 h合 jn金 zh制 chng成 , zhng重 ling量 yu约 wi为 1 3 5 0 gng公 jn斤 ( 1 . 3 5 dn吨 ) 。 2.Mechanical Presses2、机械压力机 2 、 j机 xi械 y压 l力 j机 These presses are basically of either the crank or the eccentric type (Fig. 4-12 (b). The speed varies from a maximum at the center of the stroke to zero at the bottom of the stroke, so they are stroke limited. The energy in a mechanical press is generated by a large flywheel powered by an electric motor. A clutch engages the flywheel to an eccentric shaft. A connecting rod translates the rotary motion into a reciprocating linear motion. A knuckle-joint mechanical press is shown in Fig. 4-12 (c). Because of the linkage design, very high forces can be applied in this type of press (see also Fig. 4-12 (a).这些印刷机基本上是曲柄或偏心式(图4-12(B)。速度从冲程中心的最大值到冲程底部的零,所以它们是行程受限的。机械压力机的能量是由电动机驱动的大飞轮产生的。离合器将飞轮啮合到偏心轴上。连杆把旋转运动转化为往复直线运动。一个关节机械压力机在图4-12所示(C)。由于连杆设计,非常高的力量可以应用在这类新闻(参见图4-12(一)。 zh这 xi些 yn印 shu刷 j机 j基 bn本 shang上 sh是 q曲 bng柄 hu或 pin偏 xn心 sh式 ( t图 4 - 1 2 ( B ) ) 。 s速 d度 cng从 chng冲 chng程 zhng中 xn心 de的 zu最 d大 zh值 do到 chng冲 chng程 d底 b部 de的 lng零 , su所 y以 t它 men们 sh是 xng行 chng程 shu受 xin限 de的 。 j机 xi械 y压 l力 j机 de的 nng能 ling量 sh是 yu由 din电 dng动 j机 q驱 dng动 de的 d大 fi飞 ln轮 chn产 shng生 de的 。 l离 h合 q器 jing将 fi飞 ln轮 ni啮 h合 do到 pin偏 xn心 zhu轴 shng上 。 lin连 gn杆 b把 xun旋 zhun转 yn运 dng动 zhun转 hu化 wi为 wng往 f复 zh直 xin线 yn运 dng动 。 y一 g个 gun关 ji节 j机 xi械 y压 l力 j机 zi在 t图 4 - 1 2 su所 sh示 ( C ) 。 yu由 y于 lin连 gn杆 sh设 j计 , fi非 chng常 go高 de的 l力 ling量 k可 y以 yng应 yng用 zi在 zh这 li类 xn新 wn闻 ( cn参 jin见 t图 4 - 1 2 ( y一 ) ) 。 The force available in a mechanical press depends on the stroke position; it becomes extremely high at the bottom dead center. Thus proper setup is essential to avoid breaking the dies or equipment components. Mechanical presses have high production rates; they are easier to automate and require less operator skill than do other types of forging machines. Press capacities在机械压力机上可用的力取决于行程位置,它在下死点时变得非常高。因此,适当的安装对于避免破坏模具或设备部件至关重要。机械压力机的生产率很高,比其他类型的锻压机更容易自动化,操作技能也更少。新闻的能力 zi在 j机 xi械 y压 l力 j机 shng上 k可 yng用 de的 l力 q取 ju决 y于 xng行 chng程 wi位 zhi置 , t它 zi在 xi下 s死 din点 sh时 bin变 de得 fi非 chng常 go高 。 yn因 c此 , sh适 dng当 de的 n安 zhung装 du对 y于 b避 min免 p破 hui坏 m模 j具 hu或 sh设 bi备 b部 jin件 zh至 gun关 zhng重 yo要 。 j机 xi械 y压 l力 j机 de的 shng生 chn产 l率 hn很 go高 , b比 q其 t他 li类 xng型 de的 dun锻 y压 j机 gng更 rng容 y易 z自 dng动 hu化 , co操 zu作 j技 nng能 y也 gng更 sho少 。 xn新 wn闻 de的 nng能 l力 generally range from 2.7 MN (300 tons) to 107 MN (12,000 tons).一般范围从2.7锰(300吨)到107锰(12000吨)。 (a)Hydraulic press (b) Mechanical press with an eccentric drive; the eccentric shaft can be replaced by a crankshaft to give the up-and-down motion to the ram (c) Knuckle-joint press(a)液压机(b)带有偏心传动的机械压力机;偏心轴可由曲轴取代,使柱塞(C)关节压力机上下运动。 ( a ) y液 y压 j机 ( b ) di带 yu有 pin偏 xn心 chun传 dng动 de的 j机 xi械 y压 l力 j机 ; pin偏 xn心 zhu轴 k可 yu由 q曲 zhu轴 q取 di代 , sh使 zh柱 si塞 ( C ) gun关 ji节 y压 l力 j机 shng上 xi下 yn运 dng动 。 (d) Screw press (e) Gravity drop hammer(d)螺旋压力机(e)重力落锤 ( d ) lu螺 xun旋 y压 l力 j机 ( e ) zhng重 l力 lu落 chu锤 3.Screw Presses3、螺旋压力机 3 、 lu螺 xun旋 y压 l力 j机 These presses (Fig. 4-12 (d) derive their energy from a flywheel; hence they are energy limited. The forging load is transmitted through a vertical screw, and the ram comes to a stop when the flywheel energy is dissipated. If the dies do not close at the end of the cycle, the这些压力机(图4-12(D)从飞轮获得能源;因此他们能源有限公司。锻造载荷通过垂直螺旋传递,当飞轮能量耗散时,闸板停止运转。如果模具在循环结束时没有关闭,则 operation is repeated until the forging is completed.重复操作直到锻件完成。 chng重 f复 co操 zu作 zh直 do到 dun锻 jin件 wn完 chng成 。 Screw presses are used for various open-die and closed-die forging operations; they are particularly suitable for small production quantities and precision parts, such as turbine blades. Capacities range from 1.4 MN to 280 MN (160 tons to 31,500 tons).螺旋压力机用于各种开式模具和闭式模锻操作,特别适用于小批量和精密零件,如涡轮叶片。容量从1.4锰到280锰(160吨到31500吨)。 4.5.2Hammers4.5.2锤子 4 . 5 . 2 h a m m e r s Hammers derive their energy from the potential energy of the ram, which is converted into kinetic energy (Fig. 4-12 (e); thus they are energy limited. Unlike hydraulic presses, they operate at high speeds, and the resulting low forming time minimizes the cooling of a hot forging. Low cooling rates allow the forging of complex shapes, particularly those with thin and deep recesses. To complete the forging, several successive blows are usually made in the same die. Hammers are available in a variety of designs; they are the most versatile and the least expensive type of forging equipment.锤子与RAM的势能的能量来源,它被转换成动能(图4-12(E);因此他们能源有限公司。与液压机不同的是,它们在高速运转,形成的低成形时间使热锻的冷却量降至最低。低的冷却速度允许复杂形状的锻造,特别是那些有薄深凹槽的形状。为了完成锻造,通常在同一模具中进行多次连续的打击。锤子有各种各样的设计,它们是最通用和最便宜的锻造设备。 chu锤 zi子 y与 R A M de的 sh势 nng能 de的 nng能 ling量 li来 yun源 , t它 bi被 zhun转 hun换 chng成 dng动 nng能 ( t图 4 - 1 2 ( E ) ) ; yn因 c此 t他 men们 nng能 yun源 yu有 xin限 gng公 s司 。 y与 y液 y压 j机 b不 tng同 de的 sh是 , t它 men们 zi在 go高 s速 yn运 zhun转 , xng形 chng成 de的 d低 chng成 xng形 sh时 jin间 sh使 r热 dun锻 de的 lng冷 qu却 ling量 jing降 zh至 zu最 d低 。 d低 de的 lng冷 qu却 s速 d度 yn允 x许 f复 z杂 xng形 zhung状 de的 dun锻 zo造 , t特 bi别 sh是 n那 xi些 yu有 bo薄 shn深 o凹 co槽 de的 xng形 zhung状 。 wi为 le了 wn完 chng成 dun锻 zo造 , tng通 chng常 zi在 tng同 y一 m模 j具 zhng中 jn进 xng行 du多 c次 lin连 x续 de的 d打 j击 。 chu锤 zi子 yu有 g各 zhng种 g各 yng样 de的 sh设 j计 , t它 men们 sh是 zu最 tng通 yng用 h和 zu最 bin便 yi宜 de的 dun锻 zo造 sh设 bi备 。 1.Gravity Drop Hammers1重力落锤 1 zhng重 l力 lu落 chu锤 In the operation of this hammer, a process called drop forging, the energy is derived from the free-falling ram (the hammer shown in Fig. 4-12 (e) is known as a board hammer). The available energy of the hammer is the product of the rams weight and the height of its drop. Ram weighs range from 180 kg to 4500 kg, with energy capacities ranging up to 120 kJ.在这一锤的操作,这一过程称为模锻,能量来源于自由落体的RAM(图4-12所示的锤(E)是一个众所周知的板锤)。锤子的可用能量是公羊的重量和跌落高度的乘积。RAM的重量从180公斤到4500公斤不等,能量容量高达120千焦。 zi在 zh这 y一 chu锤 de的 co操 zu作 , zh这 y一 gu过 chng程 chng称 wi为 m模 dun锻 , nng能 ling量 li来 yun源 y于 z自 yu由 lu落 t体 de的 R A M ( t图 4 - 1 2 su所 sh示 de的 chu锤 ( E ) sh是 y一 g个 zhng众 su所 zhu周 zh知 de的 bn板 chu锤 ) 。 chu锤 zi子 de的 k可 yng用 nng能 ling量 sh是 gng公 yng羊 de的 zhng重 ling量 h和 di跌 lu落 go高 d度 de的 chng乘 j积 。 R A M de的 zhng重 ling量 cng从 1 8 0 gng公 jn斤 do到 4 5 0 0 gng公 jn斤 b不 dng等 , nng能 ling量 rng容 l
- 温馨提示:
1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
2: 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
3.本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

人人文库网所有资源均是用户自行上传分享,仅供网友学习交流,未经上传用户书面授权,请勿作他用。