已阅读5页,还剩2页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
3.1 独立性检验(1)教学目标(1)通过对典型案例的探究,了解独立性检验(只要求列联表)的基本思想、方法及初步应用;(2)经历由实际问题建立数学模型的过程,体会其基本方法教学重点、难点:独立性检验的基本方法是重点基本思想的领会及方法应用是难点教学过程一问题情境1 某医疗机构为了了解呼吸道疾病与吸烟是否有关,进行了一次抽样调查,共调查了515个成年人,其中吸烟者220人,不吸烟者295人调查结果是:吸烟的220人中有37人患呼吸道疾病(简称患病),183人未患呼吸道疾病(简称未患病);不吸烟的295人中有21人患病,274人未患病问题:根据这些数据能否断定“患呼吸道疾病与吸烟有关”?二学生活动为了研究这个问题,(1)引导学生将上述数据用下表来表示:患病未患病合计吸烟37183220不吸烟21274295合计58457515 (2)估计吸烟者与不吸烟者患病的可能性差异:在吸烟的人中,有的人患病,在不吸烟的人中,有的人患病问题:由上述结论能否得出患病与吸烟有关?把握有多大?三建构数学1独立性检验:(1)假设:患病与吸烟没有关系若将表中“观测值”用字母表示,则得下表:患病未患病合计吸烟不吸烟合计(近似的判断方法:设,如果成立,则在吸烟的人中患病的比例与不吸烟的人中患病的比例应差不多,由此可得,即,因此,越小,患病与吸烟之间的关系越弱,否则,关系越强)设,在假设成立的条件下,可以通过求 “吸烟且患病”、“吸烟但未患病”、“不吸烟但患病”、“不吸烟且未患病”的概率(观测频率),将各种人群的估计人数用表示出来例如:“吸烟且患病”的估计人数为;“吸烟但未患病” 的估计人数为;“不吸烟但患病”的估计人数为;“不吸烟且未患病”的估计人数为如果实际观测值与假设求得的估计值相差不大,就可以认为所给数据(观测值)不能否定假设否则,应认为假设不能接受,即可作出与假设相反的结论(2)卡方统计量:为了消除样本对上式的影响,通常用卡方统计量(2)来进行估计卡方2统计量公式:2(其中)由此若成立,即患病与吸烟没有关系,则2的值应该很小把代入计算得2,统计学中有明确的结论,在成立的情况下,随机事件“”发生的概率约为,即,也就是说,在成立的情况下,对统计量2进行多次观测,观测值超过的频率约为由此,我们有99%的把握认为不成立,即有99%的把握认为“患病与吸烟有关系”象以上这种用统计量研究吸烟与患呼吸道疾病是否有关等问题的方法称为独立性检验说明:(1)估计吸烟者与不吸烟者患病的可能性差异是用频率估计概率,利用2进行独立性检验,可以对推断的正确性的概率作出估计,观测数据取值越大,效果越好在实际应用中,当均不小于5,近似的效果才可接受(2)这里所说的“呼吸道疾病与吸烟有关系”是一种统计关系,这种关系是指“抽烟的人患呼吸道疾病的可能性(风险)更大”,而不是说“抽烟的人一定患呼吸道疾病”(3)在假设下统计量2应该很小,如果由观测数据计算得到2的观测值很大,则在一定程度上说明假设不合理(即统计量2越大,“两个分类变量有关系”的可能性就越大)2独立性检验的一般步骤:一般地,对于两个研究对象和,有两类取值:类和类(如吸烟与不吸烟),也有两类取值:类和类(如患呼吸道疾病与不患呼吸道疾病),得到如下表所示:类类合计类类 合计推断“和有关系”的步骤为:第一步,提出假设:两个分类变量和没有关系;第二步,根据22列联表和公式计算2统计量;第三步,查对课本中临界值表,作出判断3独立性检验与反证法:反证法原理:在一个已知假设下,如果推出一个矛盾,就证明了这个假设不成立;独立性检验(假设检验)原理:在一个已知假设下,如果一个与该假设矛盾的小概率事件发生,就推断这个假设不成立四数学运用1例题:例1在500人身上试验某种血清预防感冒的作用,把他们一年中的感冒记录与另外500名未用血清的人的感冒记录作比较,结果如表所示问:该种血清能否起到预防感冒的作用? 未感冒感冒合计使用血清258242500未使用血清216284500合计4745261000例2为研究不同的给药方式(口服或注射)和药的效果(有效与无效)是否有关,进行了相应的抽样调查,调查结果如表所示根据所选择的193个病人的数据,能否作出药的效果与给药方式有关的结论?有效无效合计口服584098注射643195合计122711933.1 独立性检验(2)教学目标通过对典型案例的探究,进一步巩固独立性检验的基本思想、方法,并能运用2统计量进行独立性检验教学重点,难点:独立性检验的基本方法是重点基本思想的领会及方法应用是难点教学过程一学生活动练习:(1)某大学在研究性别与职称(分正教授、副教授)之间是否有关系,你认为应该收集哪些数据? 专业性别 (2)某高校“统计初步”课程的教师随机调查了选该课的一些学生情况,具体数据如下表:非统计专业统计专业男1310女720为了判断主修统计专业是否与性别有关系,根据表中的数据,得到2,2,所以判定主修统计专业与性别有关系,那么这种判断出错的可能性为 (答案:5%)附:临界值表(部分):(2)0.100.050.0250.0102.7063.8415.0246.635二数学运用1例题:例1在对人们的休闲方式的一次调查中,共调查了124人,其中女性70人,男性54人。女性中有43人主要的休闲方式是看电视,另外27人主要的休闲方式是运动;男性中有21人主要的休闲方式是看电视,另外33人主要的休闲方式是运动。(1)根据以上数据建立一个2 2列联表;(2)判断性别与休闲方式是否有关系。例2气管炎是一种常见的呼吸道疾病,医药研究人员对两种中草药治疗慢性气管炎的疗效进行对比,所得数据如表所示问它们的疗效有无差异(可靠性不低于99%)?有效无效合计复方江剪刀草18461245胆黄片919100
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025年淮南辅警招聘考试题库含答案详解(巩固)
- 2025年郑州辅警招聘考试题库附答案详解
- 2025年金昌辅警协警招聘考试备考题库附答案详解(研优卷)
- 2025年荆州辅警招聘考试真题及答案详解(名师系列)
- 2025年青海辅警招聘考试真题含答案详解(典型题)
- 2025年齐齐哈尔辅警协警招聘考试真题及完整答案详解一套
- 2025年荆州辅警协警招聘考试真题附答案详解(a卷)
- 2025年辽宁辅警协警招聘考试真题含答案详解(基础题)
- 2025年红河州辅警协警招聘考试备考题库含答案详解(能力提升)
- 2025年鹤岗辅警招聘考试真题附答案详解(培优)
- 2025全国医疗应急能力培训系列课程参考答案
- 初中英语试卷讲评及课堂教学设计
- 雨课堂在线学堂《中国传统文化》课后单元测试答案
- 2025年大学《社会工作-社会福利思想》考试参考题库及答案解析
- 粮食熏蒸操作要点培训课件
- 学校食堂收回自主经营方案
- 国家职业技术技能标准 4-03-02-11 食品安全管理师(试行) 2024年版
- 中国近现代史纲要社会实践作业
- 高中历史课时作业(选修第一册)详解答案
- 传感器实验报告
- 三国志9全人物能力值表
评论
0/150
提交评论