




已阅读5页,还剩2页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
【典型例题】:1、已知,求的值解:因为,又,联立得解这个方程组得2、求的值。解:原式3、若,求的值解:法一:因为所以得到,又,联立方程组,解得所以法二:因为所以,所以,所以,所以有4、 求证:。 5、求函数在区间上的值域。解:因为,所以,由正弦函数的图象,得到,所以6、求下列函数的值域(1); (2))解:(1)=令,则利用二次函数的图象得到(2) = 令,则则利用二次函数的图象得到7、若函数y=Asin(x+)(0,0)的图象的一个最高点为,它到其相邻的最低点之间的图象与x轴交于(6,0),求这个函数的一个解析式。解:由最高点为,得到,最高点和最低点间隔是半个周期,从而与x轴交点的间隔是个周期,这样求得,T=16,所以又由,得到可以取8、已知函数f(x)=cos4x2sinxcosxsin4x()求f(x)的最小正周期; ()若求f(x)的最大值、最小值数的值域解:()因为f(x)=cos4x2sinxcosxsin4x(cos2xsin2x)(cos2xsin2x)sin2x所以最小正周期为()若,则,所以当x=0时,f(x)取最大值为当时,f(x)取最小值为9、已知,求(1);(2)的值.解:(1); (2) .说明:利用齐次式的结构特点(如果不具备,通过构造的办法得到),进行弦、切互化,就会使解题过程简化。10、求函数的值域。解:设,则原函数可化为,因为,所以当时,当时,所以,函数的值域为。11、已知函数;(1)求的最小正周期、的最大值及此时x的集合;(2)证明:函数的图像关于直线对称。解: (1)所以的最小正周期,因为,所以,当,即时,最大值为;(2)证明:欲证明函数的图像关于直线对称,只要证明对任意,有成立,因为,所以成立,从而函数的图像关于直线对称。12 、已知函数y=cos2x+sinxcosx+1 (xR),(1)当函数y取得最大值时,求自变量x的集合;(2)该函数的图像可由y=sinx(xR)的图像经过怎样的平移和伸缩变换得到?解:(1)y=cos2x+sinxcosx+1= (2cos2x1)+ +(2sinxcosx)+1=cos2x+sin2x+=(cos2xsin+sin2xcos)+=sin(2x+)+所以y取最大值时,只需2x+=+2k,(kZ),即 x=+k,(kZ)。所以当函数y取最大值时,自变量x的集合为x|x=+k,kZ(2)将函数y=sinx依次进行如下变换:(i)把函数y=sinx的图像向左平移,得到函数y=sin(x+)的图像;(ii)把得到的图像上各点横坐标缩短到原来的倍(纵坐标不变),得到函数y=sin(2x+)的图像;(iii)把得到的图像上各点纵坐标缩短到原来的倍(横坐标不变),得到函数y=sin(2x+)的图像; (iv)
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 海岛生态旅游创新创业项目商业计划书
- 职场新人快速融入培训课件
- 软件开发项目管理计划及进度控制表
- 工程项目验收配合工作标准化方案
- 初中学困生帮扶方案设计及实施细则
- 2025年音乐欣赏课程考试试卷及答案
- 会所场地租用收费标准及管理方案
- 市政管网工程施工组织方案
- 2025年护士资格证考试试题及答案
- 临床医学历年试题及答案2025年版
- 管道试压安全培训课件
- 2025年 商品编码(HS CODE)电子档
- 鲜食玉米车间管理制度
- 2025巷道掘砌工(技师)技能鉴定精练考试指导题库及答案(浓缩300题)
- 《悬挂式气体灭火装置》知识培训
- 2024影视项目联合出品与剧本开发合作协议范本3篇
- 人员保密管理方案
- 信息技术(青岛酒店管理职业技术学院)知到智慧树答案
- 提高手术安全核查正确率PDCA医院改善项目申报书
- 2024年北京昌平一中初二(上)期中数学试卷及答案
- 高中数学项目化教学案例
评论
0/150
提交评论