




已阅读5页,还剩1页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
数形结合思想在高中数学中的应用灵宝实验高中 王少辉一、什么是“数形结合思想”?数形结合是一种数学思考方法;是数学研究和学习中的重要思想;也是解决数学问题的有效方法。“以形助数”可以使复杂问题简单化、抽象问题具体化;能够把抽象的数学语言变为直观的图形语言、把抽象的数学思维变为直观的形象思维;“以数助形”有助于把握数学问题的本质。二、什么类型的题可以用“数形结合思想”解决?“数”和“形”是数学研究的两个基本对象。数,通俗地说一般是指文字语言、数学符号语言、代数式等;形,通俗地说一般指图形语言、函数图象、代数式的几何意义等。既能用“数”表示,又能用“形”表示的知识就可以用数形结合思想解决。数形结合的思想方法是数学教学内容的主线之一,应用数形结合思想,可以解决以下问题:集合问题函数问题方程与不等式问题三角函数问题向量问题数列问题线性规划问题解析几何问题立体几何问题绝对值问题三、数形结合思想应用举例(一)在集合中的应用【知识点】集合的基本运算集合的并集集合的交集集合的补集文字表示ABAB若全集为U,则集合A的补集为UA符号语言x|xA,或xBx|xA,且xBx|xU,且xA图形语言在这个知识点中集合的三种运算除了抽象的符号语言描述之外,还有直观的图形语言。所以在解决某些集合的运算问题时,我们可以用数形结合思想。【例1】(1)已知(2)已知集合Ax|2x7,Bx|m1x0时,方程|x|ax只有一个解.答案(0,)【跟踪训练3】已知函数(aR),若函数f(x)在R上有两个零点,则a的取值范围是()A.(,1) B.(,0) C.(1,0) D.1,0)解析当x0时,f(x)3x1有一个零点x.因此当x0时,f(x)exa0只有一个实根,aex(x0),则1a0.若存在实数b,使得关于x的方程f(x)b有三个不同的根,则m的取值范围是_.解析在同一坐标系中,作yf(x)与yb的图象.当xm时,x22mx4m(xm)24mm2,要使方程f(x)b有三个不同的根,则有4mm20.又m0,解得m3.答案(3,)四、作函数图象的常用方法数形结合的关键在于准确作出函数的图象,那么如何作函数图象就是最关键的步骤,同学们一定要掌握。下面介绍两种高中数学中最常用的方法。1.利用描点法作函数的图象步骤:(1)确定函数的定义域;(2)化简函数解析式;(3)讨论函数的性质(奇偶性、单调性、周期性、对称性等);(4)列表(尤其注意特殊点、零点、最大值点、最小值点、与坐标轴的交点等),描点,连线.2.利用图象变换法作函数的图象(1)平移变换 yf(x+a)(a0)的图象把yf(x)的图象向左平移a个单位即可 ; yf(x -a)(a0)的图象把yf(x)的图象向右平移a个单位即可 ; yf(x)+b(b0)的图象把yf(x)的图象向上平移b个单位即可; yf(x) -b(b0)的图象把yf(x)的图象向下平移b个单位即可;即我们通常所说的左加右减,上加下减。【练习1】作出下列函数的图象(1) (2) (3)(2)对称变换 yf(x) 的图象把yf(x)的图象关于 x轴对称即可 ; yf(x) 的图象把yf(x)的图象关于 y轴对称即可 ; yf(x) 的图象把yf(x)的图象关于原点对称即可 ;【练习2】作出下列函数的图象(1) (2) (3)(3)伸缩变换 yf(ax)(a0)的图象 把yf(x)的图象纵坐标不变,各点的横坐标变为原来的倍即可 ; 相当于以y轴为中心,把图象往左右伸长或压缩;a1时压缩. yAf(x)(A0)的图象 把yf(x)的图象横坐标不变,各点的纵坐标变为原来的 A 倍即可 ; 相当于以x轴为中心,把图象上下伸长或压缩;A1时伸长,A1时压缩.(4)翻转变换y|f(x)|的图象,把yf(x)的图象位于x轴下方的部分翻到x轴上方即可;函数值为负数的变为其相反数,函数值为正数的不变,图象全部在x轴上方。yf(|x|)的图象,把yf(x)的图象位于y轴左边的部分去掉
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 混凝土养护与湿度管理方案
- 水资源监测与评估方案
- 建筑工程照明安装施工方案
- 施工期的临时交通疏导与组织方案
- 热力工程施工安全方案
- 建筑工程项目建筑结构安全评估方案
- 建筑工地安全监督与管理体系方案
- 混凝土搅拌站运营管理方案
- 建筑工程进场施工安排方案
- 抗静电复印胶印技术-洞察及研究
- 医院患者病情评估制度
- 钢栏杆安装工程施工方案
- 2025年幼儿教师师德培训案例集
- GB/T 33130-2024高标准农田建设评价规范
- 养老院老人权益保护制度
- 高空作业车安全知识培训
- 吉林大学《计算机网络(双语)》2021-2022学年期末试卷
- 《解除保护性止付申请书模板》
- 2024年云网安全应知应会考试题库
- 高层建筑火灾扑救
- 南京大学介绍
评论
0/150
提交评论