




已阅读5页,还剩45页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
UnsupervisedLearning:Generation,Creation,GenerativeModels:,WhatIcannotcreate,Idonotunderstand.,RichardFeynman,CreationImageProcessing,Now,Inthefuture,v.s.,Machinedrawsacat,GenerativeModels,PixelRNN,Tocreateanimage,generatingapixeleachtime,Ref:AaronvandenOord,NalKalchbrenner,KorayKavukcuoglu,PixelRecurrentNeuralNetworks,arXivpreprint,2016,E.g.3x3images,NN,NN,NN,Canbetrainedjustwithalargecollectionofimageswithoutanyannotation,PixelRNN,RealWorld,Ref:AaronvandenOord,NalKalchbrenner,KorayKavukcuoglu,PixelRecurrentNeuralNetworks,arXivpreprint,2016,Morethanimages,Audio:AaronvandenOord,SanderDieleman,HeigaZen,KarenSimonyan,OriolVinyals,AlexGraves,NalKalchbrenner,AndrewSenior,KorayKavukcuoglu,WaveNet:AGenerativeModelforRawAudio,arXivpreprint,2016,Video:NalKalchbrenner,AaronvandenOord,KarenSimonyan,IvoDanihelka,OriolVinyals,AlexGraves,KorayKavukcuoglu,VideoPixelNetworks,arXivpreprint,2016,PracticingGenerationModels:PokmonCreation,Smallimagesof792PokmonsCanmachinelearntocreatenewPokmons?Sourceofimage:,Dontcatchthem!Createthem!,Originalimageis40 x40,Makingtheminto20 x20,PracticingGenerationModels:PokmonCreation,Tips(?),R=50,G=150,B=100,Eachpixelisrepresentedby3numbers(correspondingtoRGB),Eachpixelisrepresentedbya1-of-Nencodingfeature,Clusteringthesimilarcolor,167colorsintotal,PracticingGenerationModels:PokmonCreation,Originalimage(40 x40):.tw/tlkagk/courses/ML_2016/Pokemon_creation/image.rarPixels(20 x20):.tw/tlkagk/courses/ML_2016/Pokemon_creation/pixel_color.txtEachlinecorrespondstoanimage,andeachnumbercorrespondstoapixel.tw/tlkagk/courses/ML_2016/Pokemon_creation/colormap.txtFollowingexperiment:1-layerLSTM,512cells,0,1,2,RealPokmon,Cover50%,Cover75%,Itisdifficulttoevaluategeneration.,Neverseenbymachine!,PokmonCreation,Drawingfromscratch,Needsomerandomness,GenerativeModels,DiederikPKingma,MaxWelling,Auto-EncodingVariationalBayes,arXivpreprint,2013,Auto-encoder,Ascloseaspossible,NNEncoder,NNDecoder,code,NNDecoder,code,Randomlygenerateavectorascode,Image?,NNEncoder,NNDecoder,code,input,output,Auto-encoder,VAE,NNEncoder,input,NNDecoder,output,2,3,Fromanormaldistribution,3,1,2,X,+,Minimizereconstructionerror,=131+2,exp,=+,Minimize,Cifar-10,Sourceofimage:/pdf/1606.04934v1.pdf,NNEncoder,input,NNDecoder,output,2,3,3,1,2,X,+,exp,PokmonCreation,Training,NNDecoder,3,1,2,10-dim,10-dim,Picktwodim,andfixtheresteight,?,Ref:http:/www.wired.co.uk/article/google-artificial-intelligence-poetrySamuelR.Bowman,LukeVilnis,OriolVinyals,AndrewM.Dai,RafalJozefowicz,SamyBengio,GeneratingSentencesfromaContinuousSpace,arXivprepring,2015,WritingPoetry,NNEncoder,sentence,NNDecoder,sentence,code,CodeSpace,iwenttothestoretobuysomegroceries.,comewithme,shesaid.,istoretobuysomegroceries.,iweretobuyanygroceries.,talktome,shesaid.,dontworryaboutit,shesaid.,WhyVAE?,?,encode,decode,code,IntuitiveReason,noise,noise,WhyVAE?,IntuitiveReason,NNEncoder,input,NNDecoder,output,2,3,3,1,2,X,+,exp,OriginalCode,Codewithnoise,Thevarianceofnoiseisautomaticallylearned,Whatwillhappenifweonlyminimizereconstructionerror?,=131+2,Minimize,WhyVAE?,IntuitiveReason,NNEncoder,input,NNDecoder,output,2,3,3,1,2,X,+,exp,OriginalCode,Codewithnoisy,Thevarianceofnoiseisautomaticallylearned,Whatwillhappenifweonlyminimizereconstructionerror?,=131+2,Minimize,Wewantcloseto0(variancecloseto1),L2regularization,WhyVAE?,Backtowhatwewanttodo,Estimatetheprobabilitydistribution,EachPokmonisapointxinthespace,P(x),P(x),=|,P(m),1,2,3,4,5,.,GaussianMixtureModel,Howtosample?,|,Eachxyougenerateisfromamixture,Distributedrepresentationisbetterthancluster.,(multinomial),misaninteger,P(x),z,VAE,0,|,zisavectorfromnormaldistribution,Eachdimensionofzrepresentsanattribute,InfiniteGaussian,Eventhoughzisfrom0,P(x)canbeverycomplex,=|,P(z)isnormaldistribution,MaximizingLikelihood,isgoingtobeestimated,TuningtheparameterstomaximizelikelihoodL,Weneedanotherdistributionq(z|x),Decoder,Encoder,NN,=|,|,|,=,Maximizingthelikelihoodoftheobservedx,=|,q(z|x)canbeanydistribution,=|,|,=|,|,=|,|+|,|,|,MaximizingLikelihood,0,=,P(z)isnormaldistribution,Maximizingthelikelihoodoftheobservedx,isgoingtobeestimated,=|,|,MaximizingLikelihood,=+|,=|,Maximizeby|,Find|and|maximizingLb,|willbeanapproximationof|intheend,=|,|,=|,=|,+|,|,MaximizingLikelihood,NN,P(z)isnormaldistribution,Maximizingthelikelihoodoftheobservedx,isgoingtobeestimated,=|,|,=,|,ConnectionwithNetwork,|,Minimizing,=131+2,Minimize,|,(RefertotheAppendixBoftheoriginalVAEpaper),=|,Maximizing,NN,NN,NN,close,Thisistheauto-encoder,ConditionalVAE,/pdf/1406.5298v2.pdf,Tolearnmore,CarlDoersch,TutorialonVariationalAutoencodersDiederikP.Kingma,DaniloJ.Rezende,ShakirMohamed,MaxWelling,“Semi-supervisedlearningwithdeepgenerativemodels.”NIPS,2014.Sohn,Kihyuk,HonglakLee,andXinchenYan,“LearningStructuredOutputRepresentationusingDeepConditionalGenerativeModels.”NIPS,2015.XinchenYan,JimeiYang,KihyukSohn,HonglakLee,“Attribute2Image:ConditionalImageGenerationfromVisualAttributes”,ECCV,2016Cooldemo:http:/vdumoulin.github.io/morphing_faces/http:/fvae.ail.tokyo/,ProblemsofVAE,Itdoesnotreallytrytosimulaterealimages,NNDecoder,code,Output,Onepixeldifferencefromthetarget,Onepixeldifferencefromthetarget,Realistic,Fake,VAEmayjustmemorizetheexistingimages,insteadofgeneratingnewimages,GenerativeModels,IanJ.Goodfellow,JeanPouget-Abadie,MehdiMirza,BingXu,DavidWarde-Farley,SherjilOzair,AaronCourville,YoshuaBengio,GenerativeAdversarialNetworks,arXivpreprint2014,YannLeCunscomment,YannLeCunscomment,擬態的演化,棕色,葉脈,蝴蝶不是棕色,蝴蝶沒有葉脈,.,Theevolutionofgeneration,NNGeneratorv1,Discri-minatorv1,Realimages:,NNGeneratorv2,Discri-minatorv2,NNGeneratorv3,Discri-minatorv3,GAN-Discriminator,NNGeneratorv1,Realimages:,Discri-minatorv1,image,1/0,(realorfake),DecoderinVAE,Vectorsfromadistribution,1,1,1,1,0,0,0,0,GAN-Generator,Discri-minatorv1,NNGeneratorv1,Randomlysampleavector,0.87,“Tuning”theparametersofgenerator,Theoutputbeclassifiedas“real”(ascloseto1aspossible),Generator+Discriminator=anetwork,Usinggradientdescenttofindtheparametersofgenerator,Fixthediscriminator,1.0,GANToyExample,Demo:/people/karpathy/gan/,Discri-minator,NNGenerator,x,z,1/0,Greendistribution,Bluecurve,Realdata(blackpoints),Cifar-10,Whichoneismachine-generated?,Ref:,Movingonthecodespace,AlecRadford,LukeMetz,SoumithChintala,UnsupervisedRepresentationLearningwithDeepConvolutionalGenerativeAdversarialNetworks,ICLR,2016,畫漫畫,Ref:,畫漫畫,Ref:,Webdemo:http:/mattya.github.io/chainer-DCGAN/,Inpractical,GANsaredifficulttooptimize
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- GB/T 15072.6-2025贵金属合金化学分析方法第6部分:铱含量的测定
- 2025安徽淮南高新区部分学校引进紧缺专业人才招聘39人模拟试卷及答案详解(考点梳理)
- 2025北京海淀第十九中学教师招聘模拟试卷及答案详解(必刷)
- 2025湖南湘潭市韶山思政教育实践中心公开招聘教师2人模拟试卷及一套答案详解
- 2025年铜川市为县以下医疗卫生机构定向招聘笔试模拟试卷及答案详解(网校专用)
- 2025届中国兵器装备春季校园招聘模拟试卷及答案详解(典优)
- 2025湖南开放大学高层次人才公开招聘25人模拟试卷及完整答案详解1套
- 2025贵州遵义医科大学第二附属医院第十三届贵州人才博览会引才17人考前自测高频考点模拟试题(含答案详解)
- Ifoxetine-CGP-15210G-生命科学试剂-MCE
- Human-YAP1-mRNA-生命科学试剂-MCE
- BIM 建模基础与应用教学教案
- 真人秀节目策划与执行方案
- 2025至2030年中国工艺美术品行业市场前景预测及投资战略研究报告
- 人工智能技术及应用 第2版 课件全套 程显毅 第1-7章 人工智能时代 -人工智能应用
- 国庆中秋课件
- 艾滋病合并马尔菲青霉菌感染
- 乡镇卫生院检验检查分级管理制度
- 科技金融管理课件下载
- 国内道路运输安全管理培训指南
- 大健康连锁店商业计划书
- 停车场突发事件应急处理预案
评论
0/150
提交评论