高等数学 微分方程PPT课件_第1页
高等数学 微分方程PPT课件_第2页
高等数学 微分方程PPT课件_第3页
高等数学 微分方程PPT课件_第4页
高等数学 微分方程PPT课件_第5页
已阅读5页,还剩175页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

微分方程,第七章,积分问题,微分方程问题,推广,微分方程的基本概念,第一节,微分方程的基本概念,引例,几何问题,物理问题,第七章,引例1.,一曲线通过点(1,2),在该曲线上任意点处的,解:设所求曲线方程为y=y(x),则有如下关系式:,(C为任意常数),由得C=1,因此所求曲线方程为,由得,切线斜率为2x,求该曲线的方程.,引例2.列车在平直路上以,的速度行驶,获得加速度,求制动后列车的运动规律.,解:设列车在制动后t秒行驶了s米,已知,由前一式两次积分,可得,利用后两式可得,因此所求运动规律为,说明:利用这一规律可求出制动后多少时间列车才,能停住,以及制动后行驶了多少路程.,即求s=s(t).,制动时,常微分方程,偏微分方程,含未知函数及其导数的方程叫做微分方程.,方程中所含未知函数导数的最高阶数叫做微分方程,(本章内容),(n阶显式微分方程),微分方程的基本概念,一般地,n阶常微分方程的形式是,的阶.,分类,或,使方程成为恒等式的函数.,通解,解中所含独立的任意常数的个数与方程,确定通解中任意常数的条件.,n阶方程的初始条件(或初值条件):,的阶数相同.,特解,引例2,引例1,通解:,特解:,微分方程的解,不含任意常数的解,定解条件,其图形称为积分曲线.,例1.验证函数,是微分方程,的通解,的特解.,解:,这说明,是方程的解.,是两个独立的任意常数,利用初始条件易得:,故所求特解为,故它是方程的通解.,并求满足初始条件,求所满足的微分方程.,例2.已知曲线上点P(x,y)处的法线与x轴交点为Q,解:如图所示,令Y=0,得Q点的横坐标,即,点P(x,y)处的法线方程为,且线段PQ被y轴平分,转化,可分离变量微分方程,第二节,解分离变量方程,可分离变量方程,第七章,分离变量方程的解法:,设y(x)是方程的解,两边积分,得,则有恒等式,方程的解满足关系式。,则有,设左右两端的原函数分别为G(y),F(x),分离变量方程的解法:,反之,当G(y)与F(x)可微且G(y)g(y)0时,的隐函数y(x)是的解.,称为方程的隐式通解,或通积分.,同样,当F(x)=f(x)0时,,由确定的隐函数x(y)也是的解.,说明由确定,例1.求微分方程,的通解.,解:分离变量得,两边积分,得,即,(C为任意常数),或,说明:在求解过程中每一步不一定是同解变形,因此可能增、,减解.,(此式含分离变量时丢失的解y=0),例2.解初值问题,解:分离变量得,两边积分得,即,由初始条件得C=1,(C为任意常数),故所求特解为,例3.求下述微分方程的通解:,解:令,则,故有,即,解得,(C为任意常数),所求通解:,练习:,解法1分离变量,即,(Ck),1)无振荡现象;,此图参数:,2)对任何初始条件,即随时间t的增大物体总趋于平衡位置.,临界阻尼解的特征:,(n=k),任意常数由初始条件定,最多只与t轴交于一点;,即随时间t的增大物体总趋于平衡位置.,2)无振荡现象;,此图参数:,例4.,的通解.,解:特征方程,特征根:,因此原方程通解为,例5.,解:特征方程:,特征根:,原方程通解:,(不难看出,原方程有特解,例6.,解:特征方程:,即,其根为,方程通解:,例7.,解:特征方程:,特征根为,则方程通解:,内容小结,特征根:,(1)当,时,通解为,(2)当,时,通解为,(3)当,时,通解为,可推广到高阶常系数线性齐次方程求通解.,思考与练习,求方程,的通解.,答案:,通解为,通解为,通解为,作业P3401(3),(6),(10);2(2),(3),(6);3,常系数非齐次线性微分方程,第八节,一、,二、,第七章,二阶常系数线性非齐次微分方程:,根据解的结构定理,其通解为,求特解的方法,根据f(x)的特殊形式,的待定形式,代入原方程比较两端表达式以确定待定系数.,待定系数法,一、,为实数,设特解为,其中为待定多项式,代入原方程,得,为m次多项式.,(1)若不是特征方程的根,则取,从而得到特解,形式为,Q(x)为m次待定系数多项式,(2)若是特征方程的单根,为m次多项式,故特解形式为,(3)若是特征方程的重根,是m次多项式,故特解形式为,小结,对方程,此结论可推广到高阶常系数线性微分方程.,即,即,当是特征方程的k重根时,可设,特解,例1.,的一个特解.,解:本题,而特征方程为,不是特征方程的根.,设所求特解为,代入方程:,比较系数,得,于是所求特解为,例2.,的通解.,解:本题,特征方程为,其根为,对应齐次方程的通解为,设非齐次方程特解为,比较系数,得,因此特解为,代入方程得,所求通解为,二、,第二步求出如下两个方程的特解,分析思路:,第一步将f(x)转化为,第三步利用叠加原理求出原方程的特解,第四步分析原方程特解的特点,第一步,利用欧拉公式将f(x)变形,第二步求如下两方程的特解,是特征方程的k重根(k=0,1),故,等式两边取共轭:,为方程的特解.,设,则有,特解:,第三步求原方程的特解,利用第二步的结果,根据叠加原理,原方程有特解:,原方程,均为m次多项式.,第四步分析,因,均为m次实,多项式.,本质上为实函数,小结:,对非齐次方程,则可设特解:,其中,为特征方程的k重根(k=0,1),上述结论也可推广到高阶方程的情形.,例4.,的一个特解.,解:本题,特征方程,故设特解为,不是特征方程的根,代入方程得,比较系数,得,于是求得一个特解,例5.,的通解.,解:,特征方程为,其根为,对应齐次方程的通解为,比较系数,得,因此特解为,代入方程:,所求通解为,为特征方程的单根,因此设非齐次方程特解为,例6.,解:(1)特征方程,有二重根,所以设非齐次方程特解为,(2)特征方程,有根,利用叠加原理,可设非齐次方程特解为,设下列高阶常系数线性非齐次方程的特解形式:,内容小结,为特征方程的k(0,1,2)重根,则设特解为,为特征方程的k(0,1)重根,则设特解为,3.上述结论也可推广到高阶方程的情形.,思考与练习,时可设特解为,时可设特解为,提示:,1.(填空)设,.,112,作业,P3471(1),(6),(10);2(2);3,一阶微分方程的,习题课(一),一、一阶微分方程求解,二、解微分方程应用问题,解法及应用,第七章,一、一阶微分方程求解,1.一阶标准类型方程求解,关键:辨别方程类型,掌握求解步骤,2.一阶非标准类型方程求解,变量代换法,代换因变量,代换某组合式,三个标准类型,可分离变量方程,齐次方程,线性方程,代换自变量,例1.求下列方程的通解,提示:(1),故为分离变量方程:,通解,(2)这是一个齐次方程,,令y=ux,化为分离变量方程:,方程两边同除以x即为齐次方程,令y=ux,化为分,离变量方程.,调换自变量与因变量的地位,用线性方程通解公式求解.,化为,例2.求下列方程的通解:,提示:(1),令u=xy,得,(2)将方程改写为,(伯努利方程),(分离变量方程),原方程化为,令y=ut,(齐次方程),令t=x1,则,可分离变量方程求解,化方程为,例3.,设F(x)f(x)g(x),其中函数f(x),g(x)在(,+),内满足以下条件:,(1)求F(x)所满足的一阶微分方程;,(2003考研),(2)求出F(x)的表达式.,解:(1),所以F(x)满足的一阶线性非齐次微分方程:,(2)由一阶线性微分方程解的公式得,于是,练习题:,(题3只考虑方法及步骤),P353题2求以,为通解的微分方程.,提示:,消去C得,P353题3求下列微分方程的通解:,提示:令u=xy,化成可分离变量方程:,提示:这是一阶线性方程,其中,P353题1,2,3(1),(2),(3),(4),(6),(9),(10),提示:可化为关于x的一阶线性方程,提示:为伯努利方程,令,提示:可化为伯努利方程,令,公式,提示:为可降阶方程,令,原方程化为,即,则,故原方程通解,提示:令,例4.设河边点O的正对岸为点A,河宽OA=h,一鸭子从点A游向点,二、解微分方程应用问题,利用共性建立微分方程,利用个性确定定解条件.,为平行直线,且鸭子游动方向始终朝着点O,提示:如图所示建立坐标系.,设时刻t鸭子位于点P(x,y),设鸭子(在静水中)的游速大小为b,求鸭子游动的轨迹方程.,O,水流速度大小为a,两岸,则,关键问题是正确建立数学模型,要点:,定解条件,由此得微分方程,即,鸭子的实际运动速度为,(自己求解),(齐次方程),思考:能否根据草图列方程?,练习题:,P354题5,6,P354题5.已知某曲线经过点(1,1),轴上的截距等于切点的横坐标,求它的方程.,提示:设曲线上的动点为M(x,y),令X=0,得截距,由题意知微分方程为,即,定解条件为,此点处切线方程为,它的切线在纵,P354题6.已知某车间的容积为,的新鲜空气,问每分钟应输入多少才能在30分钟后使车间空,的含量不超过0.06%?,提示:设每分钟应输入,t时刻车间空气中含,则在,内车间内,两端除以,并令,与原有空气很快混合均匀后,以相同的流量排出),得微分方程,(假定输入的新鲜空气,输入,的改变量为,t=30时,解定解问题,因此每分钟应至少输入250,新鲜空气.,初始条件,得,k=?,作业P3043,7;P310*4(2);P3157(2),(4),第六节,二阶微分方程的,习题课(二),二、微分方程的应用,解法及应用,一、两类二阶微分方程的解法,第七章,一、两类二阶微分方程的解法,1.可降阶微分方程的解法降阶法,令,令,逐次积分求解,2.二阶线性微分方程的解法,常系数情形,齐次,非齐次,代数法,欧拉方程,练习题:P353题2(2);3(6),(7);4(2);,解答提示,P353题2(2)求以,为通解的微分方程.,提示:由通解式可知特征方程的根为,故特征方程为,因此微分方程为,P353题3求下列微分方程的通解,提示:(6)令,则方程变为,特征根:,齐次方程通解:,令非齐次方程特解为,代入方程可得,思考,若(7)中非齐次项改为,提示:,原方程通解为,特解设法有何变化?,P354题4(2)求解,提示:令,则方程变为,积分得,利用,再解,并利用,定常数,思考,若问题改为求解,则求解过程中得,问开方时正负号如何确定?,特征根:,例1.求微分方程,提示:,故通解为,满足条件,解满足,处连续且可微的解.,设特解:,代入方程定A,B,得,得,处的衔接条件可知,解满足,故所求解为,其通解:,定解问题的解:,例2.,且满足方程,提示:,则,问题化为解初值问题:,最后求得,思考:设,提示:对积分换元,则有,解初值问题:,答案:,的解.,例3.,设函数,内具有连续二阶导,(1)试将xx(y)所满足的微分方程,变换为yy(x)所满足的微分方程;,(2)求变换后的微分方程满足初始条件,数,且,解:,上式两端对x求导,得,(1)由反函数的导数公式知,(2003考研),代入原微分方程得,(2)方程的对应齐次方程的通解为,设的特解为,代入得A0,从而得的通解:,由初始条件,得,故所求初值问题的解为,二、微分方程的应用,1.建立数学模型列微分方程问题,建立微分方程(共性),利用物理规律,利用几何关系,确定定解条件(个性),初始条件,边界条件,可能还有衔接条件,2.解微分方程问题,3.分析解所包含的实际意义,例4.,解:,欲向宇宙发射一颗人造卫星,为使其摆脱地球,引力,初始速度应不小于第二宇宙速度,试计算此速度.,设人造地球卫星质量为m,地球质量为M,卫星,的质心到地心的距离为h,由牛顿第二定律得:,(G为引力系数),则有初值问题:,又设卫星的初速度,代入原方程,得,两边积分得,利用初始条件,得,因此,注意到,为使,因为当h=R(在地面上)时,引力=重力,即,代入即得,这说明第二宇宙速度为,求质点的运动规律,例5.,上的力F所作的功与经过的时间t成正比(比例系数,提示:,两边对s求导得:,牛顿第二定律,为k),开方如何定+?,已知一质量为m的质点作直线运动,作用在质点,例6.一链条挂在一钉子上,启动时一端离钉子8m,另一端离钉子12m,力,求链条滑下来所需的时间.,解:建立坐标系如图.,设在时刻t,链条较长一段,下垂xm,又设链条线密度为常数,此时链条受力,由牛顿第二定律,得,如不计钉子对链条所产生的摩擦,由初始条件得,故定解问题的解为,解得,(s),微分方程通解:,当x=20m时,思考:若摩擦力为链条1m长的质量,定解问题的,数学模型是什么?,摩擦力为链条1m长的质量时的数学模型为,不考虑摩擦力时的数学模型为,此时链条滑下来所需时间为,练习题,从船上向海中沉放某种探测仪器,按探测,要求,需确定仪器的下沉深度y与下沉速度v之间的函,数关系.,设仪器在重力作用下从海平面由静止开始下沉,在下沉过程中还受到阻力和浮力作用,设仪器质量为m,体积为B,海水比重为,仪器所受阻力与下沉速度成正,比,比例系数为k(k0),试建立y与v所满足的微分,方程,并求出函数关系式y=y(v).(1995考研),提示:建立坐标系如图.,质量m体积B,由牛顿第二定律,重力,浮力,阻力,注意:,初始条件为,用分离变量法解上述初值问题得,作业P3484,6;P3533(8);4(2),(4);7;*11(1),得,第十一节,备用题,有特,而对应齐次方程有解,微分方程的通解.,解:,故所给二阶非齐次方程为,方程化为,1.设二阶非齐次方程,一阶线性非齐次方程,故,再积分得通解,复习:一阶线性微分方程,通解公式:,2.设函数,在r0内满足,拉普拉斯方程,二阶可导,试将方程化为以r为自变量的常微分,方程,并求f(r).,提示:,利用对称性,即,(欧拉方程),原方程可化为,且,解初值问题:,则原方程化为,通解:,利用初始条件得特解:,微分方程,习题课,第七章,一、一阶微分方程求解,1.一阶标准类型方程求解,关键:辨别方程类型,掌握求解步骤,2.一阶非标准类型方程求解,三个标准类型,可分离变量方程,齐次方程,线性方程,齐次方程,形如,的方程叫做齐次方程.,令,代入原方程得,两边积分,得,积分后再用,代替u,便得原方程的通解.,解法:,分离变量:,一阶线性方程,方法1先解齐次方程,再用常数变易法.,方法2用通解公式,可降阶微分方程的解法,降阶法,逐次积分,令,令,高阶线性微分方程,线性齐次方程解的结构,线性非齐次方程解的结构,线性齐次方程解的结构,是二阶线性齐次方程,的两个解,也是该方程的解.,(叠加原理),定理1.,定理2.,是二阶线性齐次方程的两个线,性无关特解,数)是该方程的通解.,则,线性非齐次方程解的结构,是二阶非齐次方程,的一个特解,Y(x)是相应齐次方程的通解,定理3.,则,是非齐次方程的通解.,定理4.,分别是方程,的特解,是方程,的特解.(非齐次方程之解的叠加原理),定理3,定理4均可推广到n阶线性非齐次方程.,定理5.,是对应齐次方程的n个线性,无关特解,给定n阶非齐次线性方程,是非齐次方程的特解,则非齐次方程,的通解为,齐次方程通解,非齐次方程特解,常系数,齐次线性微分方程,基本思路:,求解常系数线性齐次微分方程,求特征方程(代数方程)之根,转化,小结:,特征方程:,实根,以上结论可推广到高阶常系数线性微分方程.,若特征方程含k重复根,若特征方程含k重实根r,则其通解中必含对应项,则其通解中必含,对应项,特征方程:,推广:

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论