




已阅读5页,还剩11页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2020年普通高等学校招生全国统一考试最新高考信息卷文 科 数 学(七)注意事项:1、本试卷分第卷(选择题)和第卷(非选择题)两部分。答题前,考生务必将自己的姓名、考生号填写在答题卡上。2、回答第卷时,选出每小题的答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其他答案标号。写在试卷上无效。3、回答第卷时,将答案填写在答题卡上,写在试卷上无效。4、考试结束,将本试卷和答题卡一并交回。第卷一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的。1若集合,且,则集合可以是( )ABCD【答案】A【解析】,集合,选项A满足要求故选A2已知复数(为虚数单位)给出下列命题:;的虚部为其中正确命题的个数是( )ABC2D3【答案】C【解析】复数,的虚部为,则正确,错误故选C3若,且,则( )ABCD【答案】B【解析】,且,故选B4已知等差数列的公差不为,且,成等比数列,设的前项和为,则( )ABCD【答案】A【解析】设等差数列的公差为,成等比数列,即,解得故选A5已知变量和的统计数据如下表:34567346根据上表可得回归直线方程,据此可以预测当时,( )ABCD【答案】C【解析】由题意知,得将点代入,解得,所以当时,故选C6执行如图所示的程序框图,输出的值为( )ABCD【答案】D【解析】模拟程序框图的运行,可得程序框图的功能是计算出的值,输出的值为故选D7若过点的直线与曲线有公共点,则直线斜率的取值范围为( )ABCD【答案】D【解析】设直线的方程为,代入圆的方程中,整理得,解得,故选D8一个四面体的顶点在空间直角坐标系中的坐标分别是,绘制该四面体三视图时,按照如图所示的方向画正视图,则得到左视图可以为( )ABCD【答案】B【解析】满足条件的四面体如图:依题意投影到平面为正投影,所以左(侧)视方向如图所示,所以得到左视图效果如图故选B9设曲线上任一点处切线斜率为,则函数的部分图象可以为( )ABCD【答案】D【解析】上任一点处切线斜率为,函数,则该函数为奇函数,且当时,故选D10平行四边形中,点在边上,则的最大值为( )A2BC5D【答案】A【解析】平行四边形中,点在边上,以为原点,以所在的直线为轴,以的垂线为轴,建立坐标系,设,则,设,因为,所以当时,有最大值,故选A11等比数列的首项为,公比为,前项和为,则当时,的最大值与最小值的比值为( )ABCD【答案】B【解析】等比数列的首项为,公比为,当为奇数时,随着的增大而减小,则,故;当为偶数时,随着的增大而增大,则,故的最大值与最小值的比值为故选B12已知,关于的方程有四个不同的实数根,则的取值范围为( )ABCD【答案】A【解析】令,当时,;当时,;作图得令,;则有两个不同的根,即,故选A第卷本卷包括必考题和选考题两部分。第(13)(21)题为必考题,每个试题考生都必须作答。第(22)(23)题为选考题,考生根据要求作答。二、填空题:本大题共4小题,每小题5分。13设,满足约束条件,则的最大值为_【答案】8【解析】作可行域,则直线过点时取最大值814聊斋志异中有这样一首诗:“挑水砍柴不堪苦,请归但求穿墙术得诀自诩无所阻,额上坟起终不悟”在这里,我们称形如以下形式的等式具有“穿墙术”:,则按照以上规律,若具有“穿墙术”,则_【答案】63【解析】,按照以上规律,可得故填15如图,是半径为的圆周上一个定点,在圆周上等可能的任取一点,连接,则弦的长度超过的概率是_【答案】【解析】根据题意可得,满足条件:“弦的长度超过”对应的弧,其构成的区域是半圆,由几何概型知识得弦的长度超过的概率是16已知抛物线的焦点为,准线为,点在轴负半轴且,是抛物线上的一点,垂直于点,且,分别交,于点,则_【答案】【解析】根据抛物线的对称性,不妨设点在第一象限,如图所示:点在轴负半轴且,是抛物线上的一点,垂直于点,且,即准线为线段的垂直平分线,则故答案为三、解答题:解答应写出文字说明、证明过程或演算步骤。17(12分)已知函数部分图象如图所示(1)求值及图中的值;(2)在中,角,的对边分别为,已知,求的值【答案】(1),;(2)【解析】(1)由图象可以知道:,又,从而,由图象可以知道,所以(2)由,得,且,由正弦定理得,又由余弦定理得:,解得18(12分)2020年12月10日,我国科学家屠呦呦教授由于在发现青蒿素和治疗疟疾的疗法上的贡献获得诺贝尔医学奖,以青蒿素类药物为主的联合疗法已经成为世界卫生组织推荐的抗疟疾标准疗法,目前,国内青蒿人工种植发展迅速,调查表明,人工种植的青蒿的长势与海拨高度、土壤酸碱度、空气湿度的指标有极强的相关性,现将这三项的指标分别记为,并对它们进行量化:0表示不合格,1表示临界合格,2表示合格,再用综合指标的值评定人工种植的青蒿的长势等级,若,则长势为一级;若,则长势为二极;若,则长势为三级,为了了解目前人工种植的青蒿的长势情况,研究人员随机抽取了10块青蒿人工种植地,得到如下结果:种植地编号种植地编号(1)若该地有青蒿人工种植地180个,试估计该地中长势等级为三级的个数;(2)从长势等级为一级的青蒿人工种植地中随机抽取两个,求这两个人工种植地的综合指标均为4的概率【答案】(1);(2)【解析】(1)计算10块青蒿人工种植地的综合指标,可得下表:编号综合指标1446245353由上表可知:长势等级为三级的只有一个,其频率为,用样本的频率估计总体的频率,可估计该地中长势等级为三级的个数为(2)由(1)可知:长势等级是一级的()有,共6个,从中随机抽取两个,所有的可能结果为:,共计15个;其中综合指标的有:,三个,符合题意的可能结果为,共3个,所以概率为19(12分)如图,梯形与矩形所在平面相互垂直,(1)求证:平面;(2)求四棱锥的侧面积【答案】(1)见解析;(2)【解析】(1)因为,平面,平面,所以平面,同理可得平面,又因为,所以平面平面,因为平面,所以平面(2)因为平面平面,平面平面,所以平面,过点作交于点,连接,因为,易求得:,所以,因为,平面,所以,由,得平面,所以,因为,所以,所以四棱锥的侧面积为20(12分)已知椭圆:的左、右焦点分别为,若椭圆经过点,且的面积为2(1)求椭圆的标准方程;(2)设斜率为1的直线与以原点为圆心,半径为的圆交于,两点,与椭圆交于,两点,且(),当取得最小值时,求直线的方程【答案】(1);(2)最小值,直线的方程为【解析】(1)由的面积可得,即,又椭圆过点,由解得,故椭圆的标准方程为(2)设直线的方程为,则原点到直线的距离,由弦长公式可得将代入椭圆方程,得,由判别式,解得由直线和圆相交的条件可得,即,也即,综上可得的取值范围是设,则,由弦长公式,得由,得,则当时,取得最小值,此时直线的方程为21(12分)已知(1)若,讨论的单调性;(2)当在处的切线与平行时,关于的不等式在上恒成立,求的取值范围【答案】(1)见解析;(2)【解析】(1)因为,所以,当时,所以在上单调递减,当时,令,得,令,得,所以在上单调递减,在上单调递增(2)由(1)得,由,得,不等式即,得在上恒成立设,则设,则,在区间上,则函数递增,所以,所以在区间上,函数递减当时,而,所以,因为在上恒成立,所以请考生在22、23题中任选一题作答,如果多做,则按所做的第一题计分。22(10分)选修44:坐标系与参数方程在直角坐标系中,直线的参数方程为(为参数),以原点为极点,轴的正半轴为极轴建立极坐标系,曲线的极坐标方程为()(1)分别写出直线的普通方程与曲线的直角坐标方程;(2)已知点,直线与曲线相交于,两点,若,求的值【答案】(1),;(2)【解析】(1)将(为参数)消去参数可得,直线的普通方程为由
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 探索圆形的周长与直径关系课件2
- 对称性与最值现象探究教学课件
- 小学课件设计与制作完全指南
- 食品安全与环保协同发展策略
- 初中音乐微课《长江之歌》
- 大学生说课课件设计与实施指南
- 物流公司安全管理体系构建
- 审计报告的形成过程与试题分析试题及答案
- 江西省重点中学协作体2025届高三第一次联考物理试题+答案
- 2025年碳纤维正交三向织物项目发展计划
- 冰敷在临床工作应用
- 学校心理健康教育与家校合作的实践研究
- GB/T 44971-2024土壤硒含量等级
- 中职心理健康第五课认识情绪管理情绪
- 足浴技师押金合同范例
- 【MOOC】动物学-华中农业大学 中国大学慕课MOOC答案
- 大学本科生入学登记表(系统版)
- 足球鞋相关项目实施方案
- 名著阅读:简答、阅读题(解析版)-2025年中考语文复习专练
- 保密法实施条例培训
- 2022 年中国和美国的癌症统计数据:概况、趋势和决定因素 Cancer statistics in China and United States,2022 profiles,trends,and determinants
评论
0/150
提交评论