从一道函数题看高三数学学习法_第1页
从一道函数题看高三数学学习法_第2页
从一道函数题看高三数学学习法_第3页
全文预览已结束

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

【数学】从一道函数题看高三数学学习法高三数学与高一、高二有何区别?这是进入高三同学都很关心的。高三数学表面看是应对高考,其实,在这一过程中,始终都涉及各种能力的综合培养与提高。夯实基础是高三数学学习的第一关,要把各数学分支的相关基础知识、基本技能掌握好。由于高考是选拔性考试,有些试题的综合性较强,对技能技巧要求较高,因此高三数学学习不仅是要掌握基础,还要善于解答一些综合性强的问题,这是第二关。一道综合题可以把多个知识点有机的结合起来,因而解题环节多,解题过程长,思维强度大,细心程度高,哪儿出了一点问题都会功亏一篑。我们来看一个例子。例如:已知奇函数f(x)在(-,0)(0,+)上有定义,且在(0,+)上是增函数,f(1)=0;函数g()=sin2+mcos-2m,0,/2。若集合M=m|g()0,集合N=m|fg()0,求MN。本题中N是f(x)的复合函数,且不知其具体的表达式,无法求出M与N的交集。当解题困难时,回到已知,因f(x)是奇函数且在(0,+)上是增函数,故f(x)在(,0)上也是增函数。由f(1)=0知f(-1)=0,由数形结合可知,当f(x)0时可得x1或01。N=m|fg()0=m|g()-1或01,MN=m|g ()-1。即sin2+mcos-2m+10恒成立。这是一个双变量不等式,谁是主元?从条件看是m。但同学们最熟悉的是“反客为主”的解题思想:令t=cos,则t0,1,视为t的二次函数,即:(t)=t2-mt+2m-2=(t-m/2)2+2m-2-m2/4,t0,1。这是“轴变区间定型”最值问题,分三种情况讨论,解得MN=m|m4-2 。若从主元m的角度考虑,就会想到用分离变量法来解:t2-mt+2m-20 m(2-t2)/(2-t),令h(t)=(2-t2)/(2-t),则h(t)=t2+2/(t-2)+442 = m42 。本题集合只是一种符号语言,涉及主要知识点为函数、三角、不等式。本题涉及主要数学思想方法有:(1)数形结合思想此题中有两处用到这种方法,其一是由f (x)0得x1或01,从而得G()-1或0f(x)恒成立,且M=f(x)max,则mM。(4)分离变量法。思想方法和技能技巧是解题的明线,还有暗线。这就是每个人的学习方法、意志力和细心程度,而这往往不为同学所重视。同一个问题,水平相当的同学有的同学可以做出来,有的同学做不出来,或同一个问题对同一个人而言,在不同的情景、不同的心态、不同的解题欲望下就会有不同的结果。方法*平时积累,意志力*解题培养,也*一个人的人生观和价值观的支持。就本题而言,不少同学刚看到题目觉得头绪多,条件抽象,感到无从下手,意志薄弱者会放弃,而意志坚强者充满自信,静下来认真分析会逐渐发现解法,即使不能完全解到底,也能解答部分。细心是做好一件事的重要保证,对数学学习有特别意义。有些同学每次考试总免不了犯 “低级错误”,丢三落四,离开考场就后悔。每次都以“粗心”为托词,总是改不了。其实“粗心”的背后有多种原因,有考试环境中的紧张心态,忙中出错,有基础知识不牢加上考试紧张造成的常识错误,还有一些是平时暴露出来的问题没有引起重视,考试时集中反映出来等,解决的办法是要认真对待每一次失误,找出原因,制定切实的改正措施并落到实处,这样考试中才能发挥实际水平。少一些遗憾,你的考试就成功了!本题解答过程较长 (上述是简写),如果转化为二次函数来解,要解三个不等式组,计算量大,稍有疏忽就会导致错误;若用分离变量法,对代数式恒等变形要求较高,且最后一步对抽象思维能力要求较高。这些环节中每步都不能有差错,才能达到正确结果。刚进入高三的同学会觉得有些综合题“弯子太多”,有些知识遗忘,不能很快衔接起来,一时不太适应,一旦适用就好了。倒是一些是平时学习比较刻苦,但灵活性不够的同学队综合题会感到困难。不过这些同学不必自卑,万丈高楼平地起,有坚实的基础总能拾级而上,高考是选拔性考试,不必人人都得满分。由此可知,高三数学学习首先要重基础,

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论