吉林省东北师范大学附属中学2020届高考一轮复习 不等式的概念和性质教案 理_第1页
吉林省东北师范大学附属中学2020届高考一轮复习 不等式的概念和性质教案 理_第2页
吉林省东北师范大学附属中学2020届高考一轮复习 不等式的概念和性质教案 理_第3页
吉林省东北师范大学附属中学2020届高考一轮复习 不等式的概念和性质教案 理_第4页
吉林省东北师范大学附属中学2020届高考一轮复习 不等式的概念和性质教案 理_第5页
全文预览已结束

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

吉林省东北师范大学附属中学2020届高考一轮复习 不等式的概念和性质教案 理知识梳理:阅读必修五第三章不等式1、实数大小比较原理(1)、作差比较适用范围:步骤:(2)、作商比较:适用范围:步骤:2、不等式的性质:(1)反对称性(2)传递性(3)可加性移项法则:推论:(4)可乘性:推论1:推论2:可乘方(正)(5)可开方(正)3、绝对值不等式的性质:(1)、绝对值三角不等式:(2)、如果a,b,cR ,则|a-c|a-b|+|b-c|,当且仅当(a-b)(b-c)0时,等号成立。(3)、|a|-|b|ab|a+|b|二、题型探究探究一:用不等式表示不等关系例1:某钢铁厂要把长度为4000mm的钢管割成500mm和600mm两种,按照生产的要求,600mm的钢管不能超过500mm的钢管的3倍,请写出满足上述所有不等式关系的不等式。探究二:比较代数式的大小例2:(1)、设fx=1+logx3, gx=2logx2 ,其中x0,且 x1 ,比较fx与gx的大小 。(2)、设a0,b0,且a b,试比较aabb 与abba的大小。探究三、不等式的证明例3:已知fx=ax2-c ,且-4f1-1,-1f15,试f(3)的取值范围。探究四、函数、方程、不等式例4:已知abc ,a+b+c=0 ,方程a ax2+bx+c=0的两个这根为x1 、x2。(1)、证明:-12ba1;(2)、若x12+x1+x2+x22=1,求x12-x1x2+x22;(3)、求|x12-x22|的取值范围。四、反思感悟 五、课时作业(一)、选择题【说明】 本试卷满分100分,考试时间90分钟.一、选择题(每小题6分,共42分)1.若-11,则下列各式中恒成立的是( )A.-2-0 B.-2-1C.-1-0 D.-1-1答案:A解析:-11,-0.且-1-1,-2-0.2.(2020天津一中、益中学校模拟,1)若0,则下列结论不正确的是( )A.a2b2 B.abb2 C.2 D.|a|+|b|a+b|答案:D解析:0ba0,故|a|+|b|=-(a+b)=|a+b|.3.(2020江西南昌铁路一中模拟,3)设0ba1,则下列不等式成立的是( )A.abb21 B.ba0C.2b2a2 D.a2ab1答案:C解析:因0ba1,又y=2x递增,故2b2a2.4.已知实数a,b,c满足b+c=b-4a+3a2,c-b=4-4a+a2,则a,b,c的大小关系是( )A.cba B.acb C.cba D.acb答案:A解析:因c-b=(a-2)20,故cb.又令a=0,则b+c=6,c-b=4,即c=5,b=1,故排除B、D,选A.5.(2020湖北十一校大联考,2)在锐角三角形ABC中设x=(1+sinA)(1+sinB), y=(1+cosA)(1+cosB),则x、y大小关系为( )A.xy B.xy C.xy D.xy答案:D解析:A+B,sinAcosB,sinBcosA,xy.6.已知x1=logax2=log(a+1)x30,0a1,则x1、x2、x3的大小关系是( )A.x3x2x1 B.x2x1x3C.x1x3x2 D.x2x3x1答案:B解析:由0a1可知0x1,x21,a+11,即有x31.又x1=logax2=logax12=logax2x12=x2,故x1x2.即有0x2x11x3.7.若a,b,x,yR,则是成立的( )A.充分不必要条件 B.必要不充分条件C.充要条件 D.既不充分又不必要条件答案:C解析:二、填空题(每小题5分,共15分)8.“ab”成立的充要条件是_.答案:ab0解析:=0,故ab与a-b同号,故ab0与“ab”等价.9.已知三个不等式:ab0,-,bcad,以其中两个作为条件,余下一个作为结论,则可以组成_个正确命题.答案:3个解析:,.10.若xy,ab,则在a-xb-y,a+xb+y,axby,x-by-a,这五个式子,恒成立的不等式的序号是_.答案:解析:同向不等式相减,不等号要反向;xy0,ab0方可推出axby.三、解答题(1113题每小题10分,14题13分,共43分)11.已知ab0,dc0,求证:.证明:ab0,.dc0,cd0.0,-0.-,.12.已知abc,xyz,则ax+by+cz,ax+cy+bz,bx+ay+cz,cx+by+az中哪一个最大?请予以证明.证明:(ax+by+cz)-(ax+cy+bz)=(c-b)(z-y)c-b0,z-y0,(c-a)(z-y)0,即ax+by+czax+cy+bz.同理(ax+by+cz)-(bx+ay+cz)=(b-a)(y-x)0,即ax+by+czbx+ay+cz.(ax+by+cz)-(cx+by+az)=(c-a)(z-x)0,即ax+by+czcx+by+az.故ax+by+cz最大.13.已知+,-,求2a-的范围.解析:令2-=m(+)+n(-),则m=,n=, (+),-(-)-.-(+)+(-),故-2-.14.已知mR,ab1,f(x)=,试比较f(a)与f(b)的大小.解析:f(x)=m(1+

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论