山东省威海市2020届高三数学下学期第二次模拟考试试题 文(含解析)_第1页
山东省威海市2020届高三数学下学期第二次模拟考试试题 文(含解析)_第2页
山东省威海市2020届高三数学下学期第二次模拟考试试题 文(含解析)_第3页
山东省威海市2020届高三数学下学期第二次模拟考试试题 文(含解析)_第4页
山东省威海市2020届高三数学下学期第二次模拟考试试题 文(含解析)_第5页
已阅读5页,还剩16页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

山东省威海市2020届高三下学期第二次模拟考试试卷文科数学第卷(共60分)一、选择题:本大题共12个小题,每小题5分,共60分在每小题给出的四个选项中,只有一项是符合题目要求的1. 设全集,则集合( )A. B. C. D. 【答案】B【解析】分析: 根据题意和集合的基本运算可知1B,3A,3B,从而得解.详解: 因为全集U=1,2,3,4,5,则1B,3A,3B,则B=2,4,5.故答案为:B点睛:(1)本题主要考查交集、并集和补集运算,意在考查学生对这些基础知识的掌握能力.(2) 集合的运算要注意灵活运用维恩图和数轴,一般情况下,有限集的运算用维恩图分析,无限集的运算用数轴,这实际上是数形结合的思想的具体运用.本题运用韦恩图分析比较好.2. 若复数(是虚数单位)在复平面内对应的点在第一象限,则实数的取值范围是( )A. B. C. D. 【答案】C【解析】分析:先化简复数z,再根据z在复平面内对应的点在第一象限得到a的不等式,解不等式即得a的取值范围.详解:由题得,因为z在复平面内对应的点在第一象限,所以故答案为:C点睛:(1)本题主要考查复数的运算和复数的几何意义,意在考查学生对复数基础知识的掌握能力和基本的运算能力.(2)复数和点(a,b)是一一对应的关系.3. 对任意非零实数,若的运算原理如图所示,则的值为( )A. 2 B. C. 3 D. 【答案】D【解析】分析:先化简,再运行程序得解.详解:=因为4(-2),所以输出故答案为:D点睛:(1)本题主要考查程序框图、指数对数运算,意在考查学生对这些基础知识的运算能力.(2) 对数恒等式:(,且, ), ,.4. 已知命题: “”,命题:“”,则下列为真命题的是( )A. B. C. D. 【答案】C【解析】分析:先判断命题p和q的真假,再判断选项的真假.详解:对于命题p,当a=0,b=-1时,0-1,但是|a|=0,|b|=1,|a|0时,函数在单调递减,因为函数是奇函数,所以函数在单调递减,因为,所以f(2x+3)-1,所以x-2.故答案为:A点睛:(1)本题主要考查函数的奇偶性和单调性,考查抽象函数不等式的解法,意在考查学生对这些基础知识的掌握能力和分析推理能力.(2)解答抽象函数不等式,一般先化成的形式,再利用函数的单调性化成具体的函数不等式解答.11. 设均为小于1的正数,且,则( )A. B. C. D. 【答案】B【解析】分析:先设=m,再求出,再作商比较它们的大小关系.详解:设=m,因为均为小于1的正数,所以m0,所以所以所以,同理,故答案为:B点睛:(1)本题主要考查指数对数的换算,考查指数函数的性质,意在考查学生对这些基础知识的掌握能力和分析推理能力. (2)解答本题的关键有二,其一是看到要想到设=m,再对指互化.其二是想到作商比较大小,并把他们化成指数相同的数比较大小.12. 在数列中,一个7行8列的数表中,第行第列的元素为 ,则该数表中所有不相等元素之和为( )A. B. C. D. 【答案】C【解析】分析:由于该矩阵的第i行第j列的元素cij=aiaj+ai+aj=(2i1)(2j1)+2i1+2j1=2i+j1(i=1,2,7;j=1,2,8),根据等比数列的求和公式即可求出详解:该矩阵的第i行第j列的元素cij=aiaj+ai+aj=(2i1)(2j1)+2i1+2j1=2i+j1 (i=1,2,7;j=1,2,8), 其数据如下表所示:i,j12345678122123124125126127122312412512612712813241 251 261 271 2812914251261271281 29121015261271 281 291 210121116271 281 291 210121117 281 291 21012111由表可知,该数表中所有不相等元素之和为221+231+=-14=故答案为:C点睛:(1)本题主要考查等比数列求和,意在考查学生对这些知识的掌握能力. (2)解答本题时,要注意审题,本题求的是“所有不相等元素的和”.二、填空题(每题4分,满分20分,将答案填在答题纸上)13. 在中,在边上任取一点,满足的概率为_.【答案】. 【解析】分析:利用几何概型求的概率.详解:设点M在BC上,且BM:MC=3:5,此时.当点P在线段MC上时,满足 ,所以所求的概率为.故答案为:点睛:(1)本题主要考查几何概型的计算,意在考查学生对该知识的掌握能力.(2) 几何概型的解题步骤:首先是判断事件是一维问题还是二维、三维问题(事件的结果与一个变量有关就是一维的问题,与两个变量有关就是二维的问题,与三个变量有关就是三维的问题);接着,如果是一维的问题,先确定试验的全部结果和事件构成的区域长度(角度、弧长等),最后代公式;如果是二维、三维的问题,先设出二维或三维变量,再列出试验的全部结果和事件分别满足的约束条件,作出两个区域,最后计算两个区域的面积或体积代公式.14. 在平行四边形中,分别为边的中点,若(),则_.【答案】2.【解析】分析:先利用平面向量基本定理把表示出来,再由已知得到x,y的方程组,解方程组即得x,y的值.详解:由题得因为,所以解之得故答案为:2点睛:(1)本题主要考查平面向量的加法法则、平面向量基本定理等,意在考查学生对这些基础知识的掌握能力. (2)基底法是平面向量的高频考点,即用两个不共线的向量作为基底表示其它向量,本题用就是选择为基底,表示,使问题迎刃而解.15. 设满足约束条件,则的最大值为_.【答案】4.【解析】分析:由题意作出其平面区域,当x,y都取到最大值时z有最大值,代入即可详解:由题意作出其平面区域,由解得A(1,2),因为z=2x+y,所以y=-2x+z,所以直线的纵截距为z,所以直线的纵截距最大时,z最大.当直线y=-2x+z经过可行域A时,纵截距取得最大值,此时z最大.此时x=1,y=2时,z=2x+y有最大值21+2=4,故答案为:4点睛:(1)本题主要考查线性规划,意在考查学生对该知识的掌握能力和数形结合思想方法.(2) 解答线性规划时,要理解,不是纵截距最小,z最小,要看函数的解析式,如:y=2x-z,直线的纵截距为-z,所以纵截距-z最小时,z最大.16. 已知正三棱柱,侧面的面积为,则该正三棱柱外接球表面积的最小值为_.【答案】.【解析】分析:先求出底面三角形的外接圆的半径,再求三棱柱外接球的表面积,再利用基本不等式求最小值.详解:设BC=a,则ab=.底面三角形外接圆的半径为r,则所以所以该正三棱柱外接球表面积的最小值为故答案为:点睛:(1)本题主要考查几何体的外接球问题,意在考查学生对这些基础知识的掌握能力和空间想象能力.(2) 求几何体外接球的半径一般有两种方法:模型法和解三角形法.模型法就是把几何体放在长方体中,使几何体的顶点和长方体的若干个顶点重合,则几何体的外接球和长方体的外接球是重合的,长方体的外接球的半径就是几何体的外接球半径.如果已知中有多个垂直关系,可以考虑用此种方法.解三角形法就是找到球心和截面圆的圆心,找到、球的半径、截面圆的半径确定的,再解求出球的半径.三、解答题 (本大题共6题,共70分解答应写出文字说明、证明过程或演算步骤) 17. 在中,边上一点满足,.(1)若,求边的长;(2)若,求.【答案】(1) .(2) .【解析】分析:(1)先求出,再利用余弦定理求边的长.(2) 在中,利用正弦定理得到,再化简求sinB的值.详解:(1),在中,中,由余弦定理可得,所以(2)在中,由正弦定理可得,化简得,.点睛:(1)本题主要考查利用正弦定理、余弦定理解三角形,意在考查学生对这些基础知识的掌握能力和分析推理能力. (2)解三角形一般要知道三个元素,且至少一个为边长,对于缺少的元素放到其它三角形中去解答.18. 某网购平台为了解某市居民在该平台的消费情况,从该市使用其平台且每周平均消费额超过100元的人员中随机抽取了100名,并绘制右图所示频率分布直方图,已知之间三组的人数可构成等差数列.(1)求的值;(2)分析人员对100名调查对象的性别进行统计发现,消费金额不低于300元的男性有20人,低于300元的男性有25人,根据统计数据完成下列列联表,并判断是否有的把握认为消费金额与性别有关?(3)分析人员对抽取对象每周的消费金额与年龄进一步分析,发现他们线性相关,得到回归方程.已知100名使用者的平均年龄为38岁,试判断一名年龄为25岁的年轻人每周的平均消费金额为多少.(同一组数据用该区间的中点值代替),其中【答案】(1) .(2)列联表见解析,有的把握认为消费金额与性别有关.(3) .【解析】分析:(1)根据已知列关于m,n的方程组解之即得.(2)先完成22列联表,再计算的值判断.(3)先求调查对象的周平均消费,再求b的值.详解:(1)由频率分布直方图可知,由中间三组的人数成等差数列可知,可解得(2)周平均消费不低于300元的频率为,因此100人中,周平均消费不低于300元的人数为人.所以列联表为男性女性合计消费金额300204060消费金额300251540合计4555100所以有的把握认为消费金额与性别有关.(3)调查对象的周平均消费为,由题意,.点睛:(1)本题主要考查频率分布直方图,考查独立性检验和回归方程,意在考查学生对统计概率的基础知识的掌握情况. (2)频率分布直方图中,一般利用平均数的公式计算.其中代表第个矩形的横边的中点对应的数,代表第个矩形的面积.19. 多面体中,是边长为2的等边三角形,四边形是菱形,分别是的中点.(1)求证:平面;(2)求证:平面平面.【答案】(1)见解析.(2)见解析.【解析】分析:(1)先证明平面平面,再证明平面.(2)先证明平面,再证明平面平面.详解:(1)证明:取的中点,连接因为分别是的中点,所以在菱形中,在中,又,所以,所以平面平面,平面,所以平面.(2)证明:连结,是边长为2的等边三角形,所以,四边形是菱形,又,所以平面平面,所以平面平面.点睛:(1)本题主要考查空间平行和垂直关系的证明,意在考查学生对这些基础知识的掌握能力和空间想象转化能力. (2)证明空间的平行或垂直关系一般用几何方法和向量方法,本题用的是几何方法.20. 已知抛物线:的焦点,直线与轴的交点为,与抛物线的交点为,且.(1)求的值;(2)已知点为上一点,是上异于点的两点,且满足直线和直线的斜率之和为,证明直线恒过定点,并求出定点的坐标.【答案】(1) .(2) 直线方程为,恒过点. 【解析】【详解】分析:(1)设,直接利用抛物线的定义得到,将点代入抛物线方程,解得.(2)先求直线方程为,再求直线经过的定点.详解:(1)设,由抛物线定义,又,即,解得将点代入抛物线方程,解得.(2)由(1)知的方程为,所以点坐标为,设直线的方程为,点由得,所以,所以,解得所以直线方程为,恒过点. 点睛:(1)本题主要考查抛物线的定义和抛物线的简单几何性质,考查直线和抛物线的位置关系和直线的定点问题. (2)解答本题的关键是求出直线方程为,这里需要利用韦达定理.21. 已知函数,为的导函数.(1)求函数的单调区间;(2)若函数在上存在最大值0,求函数在上的最大值;(3)求证:当时,.【答案】(1) 当时,的单调递增区间为,无递减区间;当时,的单调递增区间为,单调递减区间为.(2) 在处取得最大值. (3)见解析.【解析】分析:(1)对a分类讨论,求函数的单调区间.(2)根据函数在上存在最大值0转化得到a=1,再求函数在上的最大值.(3)转化成证明,再转化成证明,再转化成证明.详解:(1)由题意可知, ,则,当时,在上单调递增;当时,解得时,时,在上单调递增,在上单调递减综上,当时,的单调递增区间为,无递减区间;当时,的单调递增区间为,单调递减区间为.(2)由(1)可知,且在处取得最大值,即,观察可得当时,方程成立令,当时,当时,在上单调递减,在单调递增,当且仅当时,所以,由题意可知,在上单调递减,所以在处取得最大值(3)由(2)可知,若,当时,即,令,当时,;当时,在上单调递增,在上单调递减,即,所以,所以当时,.点睛:(1)本题主要考查导数求函数的单调区间和最值,考查利用导数证明不等式,意在考查学生对这些知识的掌握能力和转化分析推理能力. (2)解答本题的关键是转化,先转化成证明,再转化成证明,再转化成证明.请考生在22、23二题中任选一题作答,如果都做,则按所做的第一题记分.22. 选修4-4:坐标系与参数方程在直角坐标系中,直线的参数方程为(为参数),以坐标原点为极点,轴的正半轴为极轴建立极坐标系,曲线的极坐标方程为.(1)若直线与相切,求的直角坐标方程;(2)若,设与的交点为,求的面积.【答案】(1) .(2) .【解析】分析:(1)先根据直线与C相切得到k的值,再写出直线的直角坐标方程.(2)先求AB的长,再求点C到直线AB的距离,最后求的面积.详解:(1)由可得的直角坐标方程为,即,消去参数,可得,设,则直线的方程为,由题意,圆心到直线的距离,解得,所以直线的直角坐标方程为.(2)因为,所以直线方程为,原点到直线的距离,联立解得或,所以,所以.点睛:(1)本题主要考查极坐标、参数方程和直角坐标方程的互化,考查三角形面积的计算,意在考查学生对这些基础知识的掌握能力。(2)解答坐标系和参数方程的题目,可以选择极坐标解答,也可以选择参数方程解答,也可以选择直角坐标解答,要看具体的情况,具体分析

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论