




已阅读5页,还剩15页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
江西师大附中2020届高三年级测试(三模)理 科 数 学一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1. 已知集合,则( )A. B. C. D. 【答案】A【解析】分析:先化简集合M和N,再求.详解:由题得所以.由题得所以.故答案为:A点睛:(1)本题主要考查集合的化简即交集运算,意在考查学生对这些基础知识的掌握能力.(2)解答本题的关键是求,由于集合中含有k,所以要给k赋值,再求.2. 已知复数满足,则( )A. B. C. D. 【答案】B【解析】分析:先求出复数z,再求.详解:由题得所以故答案为:B点睛:(1)本题主要考查复数的运算和复数的共轭复数,意在考查学生对这些基础知识的掌握能力和运算能力. (2)复数的共轭复数3. 设两条不同的直线,是两个不重合的平面,则下列命题中正确的是( )A. 若,则 B. 若,则C. 若,则 D. 若,则【答案】D【解析】分析:利用空间线面位置关系逐一判断每一个选项的真假得解.详解:对于选项A, 若,则或,所以选项A是假命题.对于选项B, 若,则或a与相交.所以选项B是假命题.对于选项C, 若,则或与相交.所以选项C是假命题.对于选项D, 若,则,是真命题.故答案为:D点睛:(1)本题主要考查空间直线平面的位置关系的判断,意在考查学生对线面位置关系定理的掌握能力和空间想象能力.(2)对于空间线面位置关系的判断,一般利用举反例和直接证明法.4. 执行如图的程序框图,如果输入的分别为,输出的,那么判断框中应填入的条件为( )A. B. C. D. 【答案】C【解析】分析:直接按照程序运行即可找到答案.详解:依次执行程序框图中的程序,可得:,满足条件,继续运行;,满足条件,继续运行;,不满足条件,停止运行,输出故判断框内应填n4,即nk+1故选C点睛:本题主要考查程序框图和判断框条件,属于基础题,直接按照程序运行,一般都可以找到答案.5. 已知函数,若,则( )A. B. C. D. 【答案】D【解析】分析:先化简得到,再求的值.所以故答案为:D点睛:(1)本题主要考查函数求值和指数对数运算,意在考查学生对这些基础知识的掌握能力和运算能力.(2)解答本题的关键是整体代入求值.6. 给出下列命题:已知,“且”是“”的充分不必要条件;已知平面向量,“”是“”的必要不充分条件;已知 ,“”是“”的充分不必要条件;命题“,使且”的否定为“,都有使且”,其中正确命题的个数是( )A. B. C. D. 【答案】C【解析】分析:逐一分析判断每一个命题的真假得解.详解:对于选项,由a1且b1ab1,反之不成立,例如取a=2,b=3,因此“a1且b1”是“ab1”的充分条件,正确;平面向量,1,|1,取=(2,1),=(2,0),则|=1,因此|1不成立反之取,=,则|1,|1不成立,平面向量,|1,|1“是“|1”的既不必要也不充分条件;如图在单位圆x2+y2=1上或圆外任取一点P(a,b),满足“a2+b21”,根据三角形两边之和大于第三边,一定有“|a|+|b|1”,在单位圆内任取一点M(a,b),满足“|a|+|b|1”,但不满足,“a2+b21”,故a2+b21是“|a|+|b|1”的充分不必要条件,因此正确;命题P:“x0R,使且lnx0x01”的否定为p:“xR,都有exx+1或lnxx1”,因此不正确其中正确命题的个数是2故答案为:C点睛:(1)本题主要考查充要条件的判断和平面向量的性质运算,考查特称命题的否定,意在考查学生对这些基础知识的掌握能力. (2)解答真假命题的判断,方法比较灵活,可以利用举例法和直接法,要灵活选择.7. 已知,则( )A. B. C. D. 或【答案】B【解析】分析:先根据得到,再求最后求的值.详解:由题得所以,所以故答案为:B点睛:(1)本题主要考查三角函数求值,意在考查学生对这些基础知识的掌握能力和分析转化能力. (2)解答本题的关键有两点,其一是根据已知求的隐含范围,其二是通过变角求的值,.8. 已知满足约束条件,若的最大值为,则的值为( )A. B. C. D. 【答案】B【解析】不等式组对应的可行域如图所示:联立得B(1,m-1).=表示动点(x,y)和点D(-1,0)的斜率,可行域中点B和D的斜率最大,所以故选B.9. 经统计,用于数学学习的时间(单位:小时)与成绩(单位:分)近似于线性相关关系对某小组学生每周用于数学的学习时间与数学成绩进行数据收集如下:由样本中样本数据求得回归直线方程为,则点与直线的位置关系是( )A. B. C. D. 与的大小无法确定【答案】B【解析】分析:由样本数据可得,利用公式,求出b,a,点(a,b)代入x+18y,求出值与100比较即可得到选项详解:由题意,(15+16+18+19+22)=18,(102+98+115+115+120)=110,5=9900,=1650,n=5324=1620,b=3.1,a=1103.118=54.2,点(a,b)代入x+18y,54.2+183.1=110100即a+18b100.故答案为:B点睛:本题主要考查回归直线方程的求法,意在考查学生对该基础知识的掌握能力和运算能力.10. 在区间上任取一个数,则函数在上的最大值是的概率为( )A. B. C. D. 【答案】A【解析】分析:设函数y=x24x+3,求出x0,4时y的取值范围,再根据a2,2讨论a的取值范围,判断f(x)是否能取得最大值3,从而求出对应的概率值详解:在区间2,2上任取一个数a,基本事件空间对应区间的长度是4,由y=x24x+3=(x2)21,x0,4,得y1,3,1ax24x+3a3a,|x24x+3a|的最大值是|3a|或|1a|,即最大值是|3a|或|1+a|;令|3a|1+a|,得(3a)2(1+a)2,解得a1;又a2,2,2a1;当a2,1时,|3a|=3a,f(x)=|x24x+3a|+a在x0,4上的最大值是3a+a=3,满足题意;当a(1,2时,|1+a|=a+1,函数f(x)=|x24x+3a|+a在x0,4上的最大值是2a+1,由1a2,得32a+15,f(x)的最大值不是3.则所求的概率为P=故答案为:A点睛:(1)本题主要考查几何概型和函数的最值的计算,意在考查学生对这些基础知识的掌握能力和分析推理能力. (2)解答本题的关键是通过函数在上的最大值是分析得到a2,1.11. 设双曲线的右焦点为,过点作轴的垂线交两渐近线于两点,且与双曲线在第一象限的交点为,设为坐标原点,若,则双曲线的离心率为( )A. B. C. D. 【答案】A【解析】分析:先根据已知求出,再代入求出双曲线的离心率.详解:由题得双曲线的渐近线方程为,设F(c,0),则因为,所以.所以解之得因为,所以故答案为:A点睛:(1)本题主要考查双曲线的几何性质和离心率的求法,意在考查学生对这些基础知识的掌握能力. (2)解答本题的关键是根据求出.12. 已知函数有两个零点,且,则下列结论错误的是( )A. B. C. D. 【答案】B【解析】分析:先通过函数有两个零点求出,再利用导数证明,即证明.详解:因为函数,所以,当a0时,所以f(x)在(0,+)上单调递增,所以不可能有两个零点.当a0时,时,函数f(x)单调递增,时,函数f(x)单调递减.所以因为函数f(x)有两个零点,所以又又令则所以函数g(x)在上为减函数,=0,又,又,即.故答案为:B点睛:(1)本题主要考查利用导数求函数的单调区间、最值和零点问题,意在考查学生对这些知识的掌握能力和分析推理能力.(2)本题的解题关键是构造函数求函数的图像和性质.二、填空题(每题5分,满分20分,将答案填在答题纸上)13. 已知函数的图像与直线以及轴所围成的图形的面积为,则的展开式中的常数项为_(用数字作答)【答案】【解析】分析:求定积分可得a值,然后求出二项式的通项,得到的展开式中含x及的项,分别与中的项相乘求得答案详解:由题意,a=(x)(2x)5展开式的常数项由(2x)5 中含x的项乘以再加上含的项乘以x得到的(2x)5 展开式的通项Tr+1=(1)r25rx52r令52r=1,得r=2,因此(2x)5 的展开式中x的系数为(1)223=80令52r=1,得r=3,因此(2x)5 的展开式中的系数为(1)3则的展开式中的常数项为80(2)40=200故答案为:200.14. 某三棱锥的三视图如图所示,则它的外接球表面积为_【答案】【解析】由三视图可得三棱锥为如图所示的三棱锥,其中底面为直角三角形将三棱锥还原为长方体,则长方体的长宽高分别为,则三棱锥外接球的球心在上下底面中心的连线上,设球半径为,球心为,且球心到上底面的距离为,则球心到下底面的距离为在如图所示的和中,由勾股定理可得及,解得所以三棱锥的外接球的表面积为答案:点睛:已知球与柱体(或锥体)外接求球的半径时,关键是确定球心的位置,解题时要根据组合体的特点,并根据球心在过小圆的圆心且与小圆垂直的直线上这一结论来判断出球心的位置,并构造出以球半径为斜边,小圆半径为一条直角边的直角三角形,然后根据勾股定理求出球的半径,进而可解决球的体积或表面积的问题15. 已知为抛物线的焦点,为其准线与轴的交点,过的直线交抛物线于两点,为线段的中点,且,则_【答案】6【解析】分析:求得抛物线的焦点和准线方程,可得E的坐标,设过F的直线为y=k(x1),代入抛物线方程y2=4x,运用韦达定理和中点坐标公式,可得M的坐标,运用两点的距离公式可得k,再由抛物线的焦点弦公式,计算可得所求值详解:F(1,0)为抛物线C:y2=4x的焦点,E(1,0)为其准线与x轴的交点,设过F的直线为y=k(x1),代入抛物线方程y2=4x,可得k2x2(2k2+4)x+k2=0,设A(x1,y1),B(x2,y2),则x1+x2=2+,中点M(1+,),可得,解得k2=2,则x1+x2=2+=4,由抛物线的定义可得=x1+x2+2=6,故答案为:6点睛:(1)本题主要考查抛物线的简单几何性质,考查直线和抛物线的位置关系,意在考查学生对这些知识的掌握能力和分析推理能力. (2)解答本题的关键是利用求出k的值.16. 为等腰直角三角形,是内的一点,且满足,则的最小值为_【答案】【解析】分析:先建立直角坐标系,再求点M的轨迹,再求|MB|的最小值.详解:以A为坐标原点建立直角坐标系,由题得C ,设M(x,y),因为,所以,所以点M在以为圆心,1为半径的圆上,且在ABC内部,所以|MB|的最小值为.故答案为:点睛:(1)本题主要考查轨迹方程和最值的求法,意在考查学生对这些基础知识的掌握能力和分析推理转化的能力. (2)本题的解题关键有两点,其一是建立直角坐标系,其二是求出点M的轨迹方程.三、解答题 (本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.) 17. 已知数列的前项和为,且满足(1)求数列的通项;(2)求数列的前项和为【答案】(1);(2)【解析】分析:(1)先化简已知,再用项和公式求出数列的通项.(2)利用错位相减法求数列的前项和为.详解:(1),即;当时,当时,不满足上式,所以数列是从第二项起的等比数列,其公比为2;所以.(2)当时,当时,点睛:(1)本题主要考查数列通项的求法和错位相减法求和,意在考查学生对这些基础知识的掌握能力和计算能力.(2)已知的关系,可以利用项和公式,求数列的通项.注意结果是能并则并,不并则分.所以本题中,不能合在一起.18. 某地十万余考生的成绩近似地服从正态分布,从中随机地抽取了一批考生的成绩,将其分成6组:第一组,第二组,第六组,作出频率分布直方图,如图所示:(1)用每组区间的中点值代表该组的数据,估算这批考生的平均成绩和标准差(精确到个位);(2)以这批考生成绩的平均值和标准差作为正态分布的均值和标准差,设成绩超过93分的为“优”,现在从总体中随机抽取50名考生,记其中“优”的人数为,是估算的数学期望【答案】(1),;(2)【解析】分析: (1)直接利用平均数和标准差公式求解.(2)先,再求,最后求的数学期望详解:(1)根据题意,计算平均数为;(2)依题意,;因为 所以.点睛:(1)本题主要考查频率分布直方图中平均数和标准差的计算,考查正态分布和随机变量的数学期望的计算,意在考查学生对这些基础知识的掌握能力和计算能力.(2)解答本题的关键有两点,其一是能利用正态分布的性质计算出,其二是灵活利用二项分布性质简洁地计算出.19. 如图,是边长为6的正方形,已知,且并与对角线交于,现以为折痕将正方形折起,且重合,记重合后记为,重合后记为. (1)求证:面面;(2)求面与面所成二面角的余弦值.【答案】(1)见解析;(2)【解析】分析:(1)先取中点,连,取中点,连,再证明面,再证明面面.(2)以与垂直的直线为轴,为轴,为轴建立坐标系,利用向量法求得面与面所成二面角的余弦值为.详解:取中点,连,则.再取中点,连,则,易得,于是,四边形为平行四边形,得,从而,那么面,又面,故面面.(2)以与垂直的直线为轴,为轴,为轴建立坐标系,则,设面的法向量,由,得:,取,得,所以面的法向量.同理可得:面的法向量,则,所以面与面所成二面角的余弦值为.点睛:(1)本题主要考查空间直线平面位置关系的证明,考查二面角的计算,意在考查学生对这些基础知识的掌握能力和空间想象能力分析推理能力.(2) 二面角的求法一般有两种,方法一:(几何法)找作(定义法、三垂线法、垂面法)证(定义)指求(解三角形),方法二:(向量法)首先求出两个平面的法向量;再代入公式(其中分别是两个平面的法向量,是二面角的平面角.)求解.(注意先通过观察二面角的大小选择“”号)20. 已知为椭圆上三个不同的点,为坐标原点(1)若,问:是否存在恒与直线相切的圆?若存在,求出该圆的方程;若不存在,请说明理由;(2)若,求的面积.【答案】(1);(2)【解析】分析:(1)先求出原点到的距离,再证明存在圆与直线恒相切.(2)先求出点C的坐标,再代入得,最后计算的面积.详解:(1)设直线,代入得:设,则;由得:因为,所以化简得:,于是原点到的距离特别地,当轴时,也符合,故存在圆与直线恒相切.(2)设,则代入得,于是所以.点睛:(1)本题主要考查直线与圆和椭圆的位置关系,考查圆锥曲线的最值问题,意在考查学生对这些基础知识的掌握能力和分析推理的能力.(2)解答本题的关键有两点,其一是根据得到,其二是化简.21. 已知函数.(1)若,求函数的最大值;(2)对任意的,不等式恒成立,求实数的取值范围.【答案】(1)0;(2)【解析】分析:(1)利用导数先求函数的单调性,再求函数的最大值.(2)先转化为在恒成立,再构造函数求,再化简=1,即得解.详解:(1)在上单调递增,在上单调递减,的最大值为(2)不等式恒成立,等价于在恒成立,令令所以在单调递增,所以存在唯一零点,且 ,所以在单调递减,在单调递增.,即构造函数,易证在单调递增,所以,则,将这两个式子代入,所以.点睛:(1)本题主要考查利用导数求函数的单调性和最值,利用导数解答恒成立问题,意在考查学生对这些知识的掌握能力和分析推理能力.(2)解答本题的关键有两点,其一
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 防洪排洪工程合同范本
- 灯箱租赁合同范本长
- 收购咖啡鲜果合同范本
- 加装电梯签约合同范本
- 混凝土块购销合同范本
- 防水施工合同范本2017
- 合作双方出资合同范本
- 护士医院劳务合同范本
- 店面展位出租合同范本
- 终身售后装修合同范本
- 2024高海拔地区模块化增压式建筑技术标准
- 于永正教育文集:于永正:我怎样教语文
- 高中英语新外研版选择性必修四Unit2知识点归纳总结(复习课件)
- XX市选调生跟班学习鉴定表
- 身为职场女性:女性事业进阶与领导力提升
- 普洱市森洁乳胶制品有限公司灭菌乳胶医用手套工厂项目环评报告书
- 著名文学著作列夫托尔斯泰《复活》教育阅读名著鉴赏课件PPT
- 泛微协同办公应用平台解决方案
- (新)部编人教版高中历史中外历史纲要上册《第13课-从明朝建立到清军入关课件》讲解教学课件
- 医药行业专题报告:VCTE技术(福瑞股份子公司)专利概览
- GB/T 42430-2023血液、尿液中乙醇、甲醇、正丙醇、丙酮、异丙醇和正丁醇检验
评论
0/150
提交评论