


全文预览已结束
下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
立体几何中的向量方法课题: 3.2立体几何中的向量方法(二) 第 课时 总序第 个教案课型: 新授课 编写时时间: 年 月 日 执行时间: 年 月 日教学目标:向量运算在几何证明与计算中的应用掌握利用向量运算解几何题的方法,并能解简单的立体几何问题批 注教学重点:向量运算在几何证明与计算中的应用 教学难点:向量运算在几何证明与计算中的应用教学用具: 多媒体,三角板教学方法: 讨论,分析教学过程:一、复习引入 讨论:将立体几何问题转化为向量问题的途径?(1)通过一组基向量研究的向量法,它利用向量的概念及其运算解决问题;(2)通过空间直角坐标系研究的坐标法,它通过坐标把向量转化为数及其运算来解决问题. 二、例题讲解1. 出示例1: 如图,在正方体中,E、F分别是、CD的中点,求证:平面ADE证明:不妨设已知正方体的棱长为个单位长度,且设i,j,k以i、j、k为坐标向量建立空间直角坐标系Dxyz,则(-1,0,0),(0,-1),(-1,0,0)(0,-1)0,AD来源:Zxxk.Com又 (0,1,),(0,1,)(0,-1)0, AE又,平面ADE说明:“不妨设”是我们在解题中常用的小技巧,通常可用于设定某些与题目要求无关的一些数据,以使问题的解决简单化如在立体几何中求角的大小、判定直线与直线或直线与平面的位置关系时,可以约定一些基本的长度空间直角坐标些建立,可以选取任意一点和一个单位正交基底,但具体设置时仍应注意几何体中的点、线、面的特征,把它们放在恰当的位置,才能方便计算和证明2. 出示例2:课本P105 例1 分析:如何转化为向量问题?进行怎样的向量运算?3. 出示例3:课本P106 例2 分析:如何转化为向量问题?进行怎样的向量运算?4. 出示例4:证:如果两条直线同垂直于一个平面,则这两条直线平行改写为:已知:直线OA平面,直线BD平面,O、B为垂足求证:OA/BD证明:以点O为原点,以射线OA为非负z轴,建立空间直角坐标系O-xyz,i,j,k为沿x轴,y轴,z轴的坐标向量,且设BD,i,j,i(1,0,0)x0,j(0,1,0)y0,(0,0,z)zk即/k由已知O、B为两个不同的点,OA/BD5. 法向量定义:如果表示向量a的有向线段所在直线垂直于平面,则称这个向量垂直于平面,记作a如果a,那么向量a叫做平面的法向量6. 小结:向量法解题“三步曲”:(1)化为向量问题 (
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025云南省红河州元阳县人民检察院招聘聘用制书记员(2人)考试备考试题及答案解析
- 2025四川乐山市金口河区医疗卫生辅助岗招募2人考试备考试题及答案解析
- 2025-2026学年广东佛山市狮山镇沙坑小学教师招聘6人考试模拟试题及答案解析
- 2025年合肥工业大学继续教育学院(教育培训中心)院聘人事派遣人员招聘6人考试备考题库及答案解析
- 2025浙江宁波市北仑区人民医院医疗健康服务集团宗瑞院区招聘编外人员1人笔试备考试题及答案解析
- 2025福建厦门市集美区锦园小学非在编教师招聘1人考试参考题库附答案解析
- 2025湖北咸宁市中医医院第二批自主招聘16人笔试模拟试题及答案解析
- 2025贵州织金县第十中学教师“跨校竞聘”工作考试模拟试题及答案解析
- 2025广东广州市花都区狮岭镇芙蓉初级中学临聘教师招聘13人笔试模拟试题及答案解析
- 2025昆仑集团战略性新兴产业招聘(132人)笔试备考试题及答案解析
- 全面质量管理TQM体系概述与实践应用探讨
- 2025年云南省事业单位招聘考试教师信息技术学科专业知识试卷试题
- 借款转为租金合法合同范本
- 2025年国企融媒体考试题库
- 2025年事业单位笔试-云南-云南药剂学(医疗招聘)历年参考题库含答案解析(5卷套题【单选100题】)
- 2025年度铝合金门购销及节能技术合同
- 心源性休克的护理个案
- 2024年10月19日北京市下半年事业单位七区联考《公共基本能力测验》笔试试题(海淀-房山-西城-通州-丰台-怀柔)真题及答案
- 《中国动态血压监测基层应用指南(2024年)》解读 2
- 2025初中语文新教材培训
- 企业技术人员管理制度
评论
0/150
提交评论