高中数学 7.7《数列的综合应用》学案1(教师用) 新人教A版必修5_第1页
高中数学 7.7《数列的综合应用》学案1(教师用) 新人教A版必修5_第2页
高中数学 7.7《数列的综合应用》学案1(教师用) 新人教A版必修5_第3页
高中数学 7.7《数列的综合应用》学案1(教师用) 新人教A版必修5_第4页
高中数学 7.7《数列的综合应用》学案1(教师用) 新人教A版必修5_第5页
已阅读5页,还剩2页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

7.7数列的综合应用一、学习目标:1理解“复利”的概念,能解决分期付款的有关计算方法; 2能够把实际问题转化成数列问题二、自主学习:【课前检测】1猜想1=1,1-4= - (1+2), 1-4+9=1+2+3,的第n个式子为 。2用数学归纳法证明,在验证成立时,左边所得的项为( C )A.1 B.1+ C. D.【考点梳理】1.等差、等比数列的应用题常见于:产量增减、价格升降、细胞繁殖等问题,求利率、增长率等问题也常归结为数列建模问题。生产部门中有增长率的总产量问题. 例如,第一年产量为,年增长率为,则每年的产量成等比数列,公比为.其中第年产量为,且过年后总产量为:银行部门中按复利计算问题. 例如:一年中每月初到银行存元,利息为,每月利息按复利计算,则每月的元过个月后便成为元. 因此,第二年年初可存款:=.注意:“分期付款”、“森林木材”型应用问题 这类应用题一般可转化为等差数列或等比数列问题.但在求解过程中,务必“卡手指”,细心计算“年限”.对于“森林木材”既增长又砍伐的问题,则常选用“统一法”统一到“最后”解决. 利率问题:单利问题:如零存整取储蓄(单利)本利和计算模型:若每期存入本金元,每期利率为,则期后本利和为:(等差数列问题);复利问题:按揭贷款的分期等额还款(复利)模型:若贷款(向银行借款)元,采用分期等额还款方式,从借款日算起,一期(如一年)后为第一次还款日,如此下去,分期还清.如果每期利率为(按复利),那么每期等额还款元应满足: (等比数列问题).分期付款应用题:为分期付款方式贷款为a元;m为m个月将款全部付清;为年利率.2.将实际问题转化为数列问题时应注意:(1)分清是等差数列还是等比数列;(2)分清是求an还是求Sn,特别要准确地确定项数n.3.数列与其他知识的综合也是常考的题型,如:数列与函数、不等式、解析几何知识相互联系和渗透,都是常见的题型。4.强化转化思想、方程思想的应用.三、合作探究:题型1 以等差数列为模型的问题例1 由于美伊战争的影响,据估计,伊拉克将产生60100万难民,联合国难民署计划从4月1日起为伊难民运送食品.第一天运送1000 t,第二天运送1100 t,以后每天都比前一天多运送100t,直到达到运送食品的最大量,然后再每天递减100 t,连续运送15天,总共运送21300 t,求在第几天达到运送食品的最大量.剖析:本题实质上是一个等差数列的求通项和求和的问题.解:设在第n天达到运送食品的最大量.则前n天每天运送的食品量是首项为1000,公差为100的等差数列.an=1000+(n1)100=100n+900.其余每天运送的食品量是首项为100n+800,公差为100的等差数列.依题意,得1000n+100+(100n+800)(15n)+(100)=21300(1n15).整理化简得n231n+198=0.解得n=9或22(不合题意,舍去).答:在第9天达到运送食品的最大量.变式训练1 数列an中,a16,且anan1n1(nN*,n2),则这个数列的通项an_. 答案:(n1)(n2)解:由已知等式得nan(n1)an1n(n1)(nN*,n2),则1,所以数列是以3为首项,1为公差的等差数列,即n2,则an(n1)(n2)n1时,此式也成立小结与拓展:对数列应用题要分清是求通项问题还是求和问题。题型2 以等比数列为模型的实际问题例2 (2020年春季上海,20)某市2020年底有住房面积1200万平方米,计划从2020年起,每年拆除20万平方米的旧住房.假定该市每年新建住房面积是上年年底住房面积的5%.(1)分别求2020年底和2020年底的住房面积;(2)求2024年底的住房面积.(计算结果以万平方米为单位,且精确到0.01)剖析:本题实质是一个等比数列的求和问题.解:(1)2020年底的住房面积为1200(1+5%)20=1240(万平方米),2020年底的住房面积为1200(1+5%)220(1+5%)20=1282(万平方米),2020年底的住房面积为1240万平方米,2020年底的住房面积为1282万平方米.(2)2024年底的住房面积为1200(1+5%)2020(1+5%)1920(1+5%)1820(1+5%)20=1200(1+5%)20202522.64(万平方米),2024年底的住房面积约为2522.64万平方米.评述:应用题应先建立数学模型,再用数学知识解决,然后回到实际问题,给出答案.变式训练2 从2002年1月2日起,每年1月2日到银行存入一万元定期储蓄,若年利率为p,且保持不变,并约定每年到期存款均自动转为新一年的定期存款,到2020年1月1日将所有存款及利息全部取回,则可取回的钱的总数为_ _万元.答案:(1+p)7(1+p)解:存款从后向前考虑(1+p)+(1+p)2+(1+p)5=(1+p)7(1+p).注:2020年不再存款.小结与拓展:对数列应用题要分清是求通项问题还是求和问题。题型3 数列与函数、不等式等问题的综合应用例3 (文)在数列an中,a11,3anan1anan10(n2,nN)(1)试判断数列是否为等差数列;(2)设bn满足bn,求数列bn的前n项为Sn;(3)若an,对任意n2的整数恒成立,求实数的取值范围解:(1)a10,an0,由已知可得3(n2),故数列是等差数列(2)由(1)的结论可得bn1(n1)3,所以bn3n2,Sn.(3)将an代入an并整理得(1)3n1,原命题等价于该式对任意n2的整数恒成立设Cn,则Cn1Cn0,故Cn1Cn,Cn的最小值为C2, 的取值范围是(,变式训练3 已知数列an的前n项和为Sn,对任意nN*都有Snan,若1Sk1),即an(an)(an1)anan1,整理得:2,an是首项为1,公比为2的等比数列,Sk,1Sk9,19,即4(2)k28,仅当k4时不等式成立小结与拓展:数列的综合问题常与函数、方程、不等式等知识相互联系和渗透.四、课堂总结:(以学生为主,师生共同完成)1.等差、等比数列的应用题常见于:产量增减、价格升降、细胞繁殖等问题,求利率、增长率等问题也常归结为数列建模问题. 解应用题的关键是建立数学模型,转化为数学问题,要加强培养转化意识.2.将实际问题转化为数列问题时应注意:(1)分清是等差数列还是等比数列;(2)分清是求an还是求Sn,特别要准确地确定项数n.3.数列的综合问题常与函数、方程、不等式等知识相互联系和渗透.4.强化转化思想、方程思想的应用.五、检测巩固:1某地区森林原有木材存量为,且每年增长率为25,因生产建设的需要每年年底要砍伐的木材量为,设为年后该地区森林木材的存量,(1)求的表达式;(2)为保护生态环境,防止水土流失,该地区每年的森林木材存量不少于,如果,那么该地区今后会发生水土流失吗?若会,需要经过几年?(参考数据:)解:(1)设第一年的森林的木材存量为,第年后的森林的木材存量为,则,(2)当时,有得即,所以,答:经过8年后该地区就开始水土流失2轻纺城的一家私营企业主,一月初向银行贷款一万元作开店资金,每月月底获得的利润是该月月初投入资金的,每月月底需要交纳房租和所得税为该月所得金额(包括利润)的,每月的生活费开支300元,余款作为资金全部投入再经营,如此继续,问该年年底,该私营企业主有现款多少元?如果银行贷款的年利率为,问私营企业主还清银行贷款后纯收入还有多少元?解:第一个月月底余元,设第个月月底余,第个月月底余,则,从而有,设,是等比数列,还贷后纯收入为元3银行按规定每经过一定的时间结算存(贷)款的利息一次,结算后即将利息并入本金,这种计算利息的方法叫做复利现在有某企业进行技术改造,有两种方案:甲方案:一次性贷款10万元,第一年便可获得利润1万元,以后每年比上年增加30的利润;乙方案:每年贷款1万元,第一年可获得利润1万元,以后每年比前一年多获利5000元两种方案的期限都是10年,到期一次行归还本息若银行贷款利息均以年息10的复利计算,试比较两个方案哪个获得存利润更多?(计算精确到千元,参考数据:) 解:甲方案10年获利润是每年利润数组成的数列的前10项的和:(万元)到期时银行的本息和为(万元)甲方案扣除本息后的净获利为:(万元)乙方案:逐年获利成等差数列,前10年共获利:(万元)贷款的本利和为:(万元)乙方案扣除本息后的净获利为:(万元)所以,甲方案的获利较多4某工厂在1999年的“减员增效”中对部分人员实行分流,规定分流人员第一年可以到原单位领取工资的100,从第二年起,以后每年只能在原单位按上一年的领取工资,该厂根据分流人员的技术特长,计划创办新的经济实体,该经济实体预计第一年属投资阶段,第二年每人可获得元收入,从第三年起每人每年的收入可在上一年的基础上递增50,如果某人分流前工资的收入每年元,分流后进入新经济实体,第年的收入为元,(1)求的通项公式;(2)

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论