




已阅读5页,还剩1页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
高中数学新课标典型例题:数列【例1】 求出下列各数列的一个通项公式解 (1)所给出数列前5项的分子组成奇数列,其通项公式为2n1,而前5项的分母所组成的数列的通项公式为22n,所以,已知数列的(2)从所给数列的前四项可知,每一项的分子组成偶数列,其通项公式为2n,而分母组成的数列3,15,35,63,可以变形为13,35,57,79,即每一项可以看成序号n的(2n1)与2n1的积,也即(2n1)(2n1),因此,所给数列的通项公式为:(3)从所给数列的前5项可知,每一项的分子都是1,而分母所组成的数列3,8,15,24,35,可变形为13,24,35,46,57,即每一项可以看成序号n与n2的积,也即n(n2)各项的符号,奇数项为负,偶数项为正因此,所给数列的通项公式为:1,4,9,16,25,是序号n的平方即n2,分母均为2因此所【例2】 求出下列各数列的一个通项公式(1)2,0,2,0,2,(3)7,77,777,7777,77777,(4)0.2,0.22,0.222,0.2222,0.22222,解 (1)所给数列可改写为11,11,11,11,可以看作数列1,1,1,1,的各项都加1,因此所给数的通项公式an(1)n+11所给数列亦可看作2,0,2,0周期性变化,因此所给数列的数列n,分子组成的数列为1,0,1,0,1,0,可以看作是2,(4)所给数列0.2,0.22,0.222,0.2222,0.22222,可以改写说明1用归纳法写出数列的一个通项公式,体现了由特殊到一般的思维规律对于项的结构比较复杂的数列,可将其分成几个部分分别考虑,然后将它们按运算规律结合起来2对于常见的一些数列的通项公式(如:自然数列,an=n;自然数的平方数列,ann2;奇数数列,an2n1;偶数数列,an=2n;纳出数列的通项公式3要掌握对数列各项的同加、同减、同乘以某一个不等于零的数的变形方法,将其转化为常见的一些数列几项【例4】 已知下面各数列an的前n项和Sn的公式,求数列的通项公式(1)Sn2n23n(2)Snn21(3)Sn2n3(4)Sn(1)n+1n解 (1)当n=1时,a1=S11;当n2时,anSnSn-1=(2n23n)2(n1)23(n1)4n5,由于a1也适合此等式,因此an=4n5(2)当n1时,a1S1=112;当n2时,anSnSn-1=n21(n1)212n1,由于a1不适合于此等式,(3)当n1时,a1=S123=5;当n2时,an=SnSn-12n3(2n-13)2n-1,由于a1不适合于此等式,(4)当n1时,a1S1=(1)21=1;当n2时,anSnSn-1=(1)n+1n(1)n(n1)=(1)n+1(2n1),由于a1也适可于此等式,因此an(1)n+1(2n1),nN*说明 已知Sn求an时,要先分n1和n2两种情况分别进行计算,然后验证能否统一(1)写出数列的前5项;(2)求an(2)由第(1)小题中前5项不难求出【例6】 数列an中,a11,对所有的n2,都有a1a2a3ann2(1)求a3a5;解 由已知:a1a2a3ann2得说明 (1)“知和求差”、“知积求商”是数列中常用的基本方法(2)运用方程思想求n,若nN*,则n是此数列中的项,反之,则不是此数列中的项【例7】 已知数an=(a21)(n32n)(a=1)是递增数列,试确定a的取值范围解法一 数列an是递增数列,an+1anan+1an(a21)(n1)32(n1)(a21)(n32n)(a21)(n1)32(n1)n32n(a21)(3n23n1)(a21)(3n23n1)0又nN*,3n23n1=3n(n1)10a210,解得a1或a1解法二 an是递增数列,a
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025年供销社招聘考试必-备知识题库与解析指南
- 护理带教课件教学
- 抢救药品使用及护理课件
- 2025年锤纹漆项目发展计划
- 2025年营养型输液项目建议书
- 河南省郑州市二七区实验中学2025-2026学年七年级上学期入学测试语文试卷(含答案)
- 2025年飞机碳刹车预制件合作协议书
- 第13章 三角形 单元测试(含答案)人教版(2024)数学八年级上 册
- 小学数字年龄题目及答案
- 2025年细微射频同轴电缆合作协议书
- 第2课 教师节快乐 第2课时(课件)2025-2026学年道德与法治二年级上册统编版
- 2025年福建省福州市辅警考试题库(附答案)
- 2025年国家网络安全宣传周知识竞赛考试练习题库(完整版)含答案
- 绿化项目养护监理方案投标文件(技术方案)
- 科普短视频与新闻传播融合模式的研究
- 2025-2030电动船舶电池系统安全标准构建与产业链配套能力报告
- 安徽省港航集团有限公司所属企业招聘笔试真题2024
- 数字时代群体冲突演变-洞察及研究
- 2025秋新部编版一年级上册语文教学计划+教学进度表
- 2025年公安辅警招聘知识考试题(附答案)
- (标准)便利店转让合同协议书带烟证
评论
0/150
提交评论