全文预览已结束
下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
幂函数一、教学目标1、了解简单幂函数的概念,巩固画函数图像的方法,培养学生识图和画图的能力。2、会利用定义证明简单函数的奇偶性,提高学生的逻辑思维能力。3、了解利用奇偶性画函数图像和研究函数的方法,培养学生分析问题和解决问题的能力。二、重难点重点是奇函数和偶函数的概念及函数奇偶性的判定。难点是幂函数的概念及判断函数的奇偶性。(一)新课引入:在初中我们已学过正比例函数、反比例函数、一次函数、二次函数,这一节课我们将再学习一种新的函数幂函数,引出课题。(二)新课讲授:1、先看下面几个具体问题:(1)如果张红购买了每千克1元的蔬菜x千克,那么她需要支付y=x元,这里y是x的函数。(2)如果正方形的边长为a,那么正方形的面积S=a2,这里S是a的函数。(3)如果一个正方形场地的面积为S,那么这个正方形的边长,这里a是S的函数。(4)如果某人t秒内骑车行进了1km,那么他骑车的平均速度V=t-1km/S,这里V是t的函数。请同学们思考:这些函数有什么共同的特征?(主要观察函数中的常数和变量的位置,右边解析式的形式)结果:他们有以下共同特点(1)指数为常数;(2)均是以自变量为底的幂;(3)幂的系数为1,由此可得:一般地,函数y=xa叫做幂函数,其中x是自变量,a是常数。注:幂函数中a的值可以为任意实数例1:判断下列函数是否为幂函数(1)y=x4;(2)y=;(3)y=x2;(4)y=;(5)y=2x2;(6)y=x3+2;2、观察下图,思考并讨论以下问题:(1)这两个函数图象有什么共同特征吗?(2)函数中自变量取相反的两个数时对应的两个函数值之间有何关系?f(x)=x2 f(x)=|x| f(3)=9=f(3) f(3)=3=f(3)f(2)=4=f(2) f(2)=2=f(2)f(1)=1=f(1) f(1)=1=f(1)结论:一般地,图象关于y轴对称的函数叫做偶函数,在偶函数中f(-x)=f(x)。3、观察函数f(x)=x和f(x)=的图象(下图),你能发现两个函数图象有什么共同特征吗?f(x)=x f(x)= f(3)=3=f(3) f(3)= =f(3)f(2)=2=f(2) f(2)= =f(2)f(1)=1=f(1) f(1)=1=f(1)结论:一般地,图象关于原点对称的函数称为奇函数,在奇函数中,有f(x)=f(x)。注意:(1)若一个函数是奇函数或偶函数则称函数具有奇偶性,函数的奇偶性是函数的整体性质。(2)由函数奇偶性的定义可知:对于定义域内的任意一个x,则x也一定是定义域内的一个自变量(即定义域关于原点对称)。(3)f(x)定义域内任意的x若f(x)=f(x)成立,则f(x)为奇函数若f(x)=f(x)成立,则f(x)为偶函数(4)若f(x)为奇函数,f(0)要么为0,要么不存在,即y=f(x),xA,若0A,则f(0)=0;若0A,则f(0)不存在。(5)若f(x)为偶函数,则f(x)=f(x)=f(|x|)。(6)若f(x)为奇函数,则f(x)在a,b与b,a具有相同的单调性,若f(x)为偶函数,则f(x)在a,b与b,a具有相反的单调性。例2:判断下列函数的奇偶性(1)f(x)=x+;(2)f(x)=;(3)f(x)=x3+1解:(1)定义域为x|x0又f(x)=x+=(x+)=f(x)即f(x)=f(x) f(x)是奇函数(2)定义域为x|x0又f(x)=f(x)即f(x)=f(x) f(x)是偶函数(3)定义域为R,f(x)=(x)3+1=x3+1x3+1即f(x)= f(x) 又x3+1(x3+1) 即f(x)f(x)f(x)既不是奇函数也不是偶函数一般地,判断函数奇偶性的步骤如下: (1)先求定义域,看是否关于原点对称;(2)再判断f(x)=f(x)或f(x)=f(x)是否恒成立。(三)课堂练习判断下列函数的奇偶性(1)f(x)=x; (2)f(x)=x2+1;(3)f(x)=x+1; (4)f(x)=x2 x1,3;(四)本课小结1、幂函数的定义:一般地,函数y=xa叫幂函数,其中x是自变量,a是常数。2、奇偶函数的定义:函数的图象关于原点对称f(x)为奇函数函数的图象关于y轴对称f(x)为偶函数3、奇、偶函数的性质:对于f(x)定义域内的任意一个x如果都有f(x)=f(x)f(x)为奇函数如果都有f(x)=f(x)f(x
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025年公司搬迁员工安置协议
- 2025年公共区域照明设备维护合同协议
- 2025年工业知识图谱研发合作协议
- 保障型保险科普
- 资源智能分配实施办法
- 华三IT售前专家认证GB10-125 H3CE考试通关试题库(含答案)
- 公务员浙江试题及答案
- 2025资阳社工考试真题及答案
- 2025上海市公务员面试真题及答案
- 儿童康复临床诊疗规范
- 成都七中万达学校高一上化学半期考试试卷
- 2025医疗机构志愿者服务体系管理与社会责任履行报告
- 江西省九校2025-2026学年高三上学期11月期中考试英语试卷(含答案)
- 【2025年】办公室文员测试题库及参考答案
- 2025年6月江苏扬州经济技术开发区区属国有企业招聘素质测试(初试)笔试考试备考试题及答案解析
- 2025年广东省普通高中学业水平合格性考试英语试题(原卷版)
- 运营管理职业规划
- 2025年船舶工业智能化生产模式研究报告及未来发展趋势预测
- 学堂在线 研究生学术与职业素养讲座 章节测试答案
- TSG11-2020 锅炉安全技术规程
- 肩手综合征康复
评论
0/150
提交评论