高中数学互斥事件及其发生的概率(二)苏教版必修3_第1页
高中数学互斥事件及其发生的概率(二)苏教版必修3_第2页
高中数学互斥事件及其发生的概率(二)苏教版必修3_第3页
高中数学互斥事件及其发生的概率(二)苏教版必修3_第4页
全文预览已结束

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

互斥事件及其发生的概率(二)教学目的:掌握互斥事件概率的求法教学重点:互斥事件的概率的求法教学难点:互斥事件的概率的求法授课类型:新授课 课时安排:1课时 教 具:多媒体、实物投影仪 教学过程:一、复习引入:1 事件的定义:随机事件:在一定条件下可能发生也可能不发生的事件;必然事件:在一定条件下必然发生的事件;不可能事件:在一定条件下不可能发生的事件2随机事件的概率:一般地,在大量重复进行同一试验时,事件发生的频率总是接近某个常数,在它附近摆动,这时就把这个常数叫做事件的概率,记作3.概率的确定方法:通过进行大量的重复试验,用这个事件发生的频率近似地作为它的概率;4概率的性质:必然事件的概率为,不可能事件的概率为,随机事件的概率为,必然事件和不可能事件看作随机事件的两个极端情形 5基本事件:一次试验连同其中可能出现的每一个结果(事件)称为一个基本事件6等可能性事件:如果一次试验中可能出现的结果有个,而且所有结果出现的可能性都相等,那么每个基本事件的概率都是,这种事件叫等可能性事件7等可能性事件的概率:如果一次试验中可能出现的结果有个,而且所有结果都是等可能的,如果事件包含个结果,那么事件的概率8等可能性事件的概率公式及一般求解方法9.事件的和的意义:对于事件A和事件B是可以进行加法运算的10 互斥事件的概念:不可能同时发生的个事件叫做互斥事件一般地:如果事件中的任何两个都是互斥的,那么就说事件彼此互斥11对立事件的概念:事件和事件B必有一个发生的互斥事件.12互斥事件的概率的求法:如果事件彼此互斥,那么二、讲解范例:例1袋中有5个白球,3个黑球,从中任意摸出4个,求下列事件发生的概率:(1)摸出2个或3个白球;(2)至少摸出1个白球;(3)至少摸出1个黑球.解:从8个球中任意摸出4个共有种不同的结果.记从8个球中任取4个,其中恰有1个白球为事件A1,恰有2个白球为事件A2,3个白球为事件A3,4个白球为事件A4,恰有i个黑球为事件B,则(1)摸出2个或3个白球的概率P1(A2A3)(A2)(A3) (2)至少摸出1个白球的概率P21(B4)101(3)至少摸出1个黑球的概率31(A4)1例2盒中有6只灯泡,其中2只次品,4只正品,有放回地从中任取两次,每次取一只,试求下列事件的概率:(1)取到的2只都是次品;(2)取到的2只中正品、次品各一只;(3)取到的2只中至少有一只正品.解:从6只灯泡中有放回地任取两只,共有6236种不同取法.(1)取到的2只都是次品情况为224种.因而所求概率为.(2)由于取到的2只中正品、次品各一只有两种可能:第一次取到正品,第二次取到次品;及第一次取到次品,第二次取到正品.因而所求概率为P=(3)由于“取到的两只中至少有一只正品”是事件“取到的两只都是次品”的对立事件.因而所求概率为P=1-例3从男女学生共有36名的班级中,任意选出2名委员,任何人都有同样的当选机会.如果选得同性委员的概率等于,求男女生相差几名?解:设男生有x名,则女生有36-x名.选得2名委员都是男性的概率为选得2名委员都是女性的概率为以上两种选法是互斥的,又选得同性委员的概率等于,得解得x=15或x=21即男生有15名,女生有36-15=21名,或男生有21名,女生有36-21=15名.总之,男女生相差6名 三、课堂练习: 1.回答下列问题:(1)甲、乙两射手同时射击一目标,甲的命中率为0.65,乙的命中率为0.60,那么能否得出结论:目标被命中的概率等于0.650.601.25,为什么?(2)一射手命中靶的内圈的概率是0.25,命中靶的其余部分的概率是0.50.那么能否得出结论:目标被命中的概率等于0.20.00.7,为什么?(3)两人各掷一枚硬币,“同时出现正面”的概率可以算得为.由于“不出现正面”是上述事件的对立事件,所以它的概率等于1-=.这样做对吗?说明道理. 2.战士甲射击一次,问:(1)若事件A(中靶)的概率为0.95,的概率为多少?(2)若事件B(中靶环数大于5)的概率为0.7,那么事件C(中靶环数小于6)的概率为多少?事件D(中靶环数大于0且小于6)的概率是多少?3.某产品分甲、乙、丙三级,其中乙、丙两级均属次品.在正常生产情况下出现乙级品和丙级品的概率分别为3%和1%.求抽验一只是正品(甲级)的概率.4.在放有5个红球、4个黑球、3个白球的袋中,任意取出3个球,分别求出3个全是同色球的概率及全是异色球的概率.5.某单位36人的血型类别是:A型12人,B型10人,AB型8人,O型6人.现从这36人中任选2人,求此2人血型不同的概率.6.在一只袋子中装有7个红玻璃球,3个绿玻璃球.从中无放回地任意抽取两次,每次只取一个.试求:(1)取得两个红球的概率;(2)取得两个绿球的概率;(3)取得两个同颜色的球的概率;(4)至少取得一个红球的概率.7.在房间里有4个人.问至少有两个人的生日是同一个月的概率是多少?答案:1. (1)不能.因为甲命中目标与乙命中目标两事件不互斥.(2)能.因为命中靶的内圈和命中靶的其余部分是互斥事件.(3)不对.因为“不出现正面”与“同时出现正面”不是对立事件,故其概率和不为1.2. (1)0.05 (2)P(

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论