2014年陕西省高考数学试卷(文科)_第1页
2014年陕西省高考数学试卷(文科)_第2页
2014年陕西省高考数学试卷(文科)_第3页
2014年陕西省高考数学试卷(文科)_第4页
2014年陕西省高考数学试卷(文科)_第5页
已阅读5页,还剩17页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2014年陕西省高考数学试卷(文科)一、选择题(共10小题,每小题5分,共50分)1(5分)设集合M=x|x0,xR,N=x|x21,xR,则MN=()A0,1B(0,1)C(0,1D0,1)2(5分)函数f(x)=cos(2x+)的最小正周期是()ABC2D43(5分)已知复数z=2i,则z的值为()A5BC3D4(5分)根据如图所示的框图,对大于2的整数N,输出的数列的通项公式是()Aan=2nBan=2(n1)Can=2nDan=2n15(5分)将边长为1的正方形以其一边所在直线为旋转轴旋转一周,所得几何体的侧面积是()A4B3C2D6(5分)从正方形四个顶点及其中心这5个点中任取2个点,则这2个点的距离小于该正方形边长的概率为()ABCD7(5分)下列函数中,满足“f(x+y)=f(x)f(y)”的单调递增函数是()Af(x)=x3Bf(x)=3xCf(x)=xDf(x)=()x8(5分)原命题为“若an,nN+,则an为递减数列”,关于其逆命题,否命题,逆否命题真假性的判断依次如下,正确的是()A真、真、真B假、假、真C真、真、假D假、假、假9(5分)某公司10位员工的月工资(单位:元)为x1,x2,x10,其均值和方差分别为和s2,若从下月起每位员工的月工资增加100元,则这10位员工下月工资的均值和方差分别为()A,s2+1002B+100,s2+1002C,s2D+100,s210(5分)如图,修建一条公路需要一段环湖弯曲路段与两条直道平滑连接(相切),已知环湖弯曲路段为某三次函数图象的一部分,则该函数的解析式为()Ay=x3x2xBy=x3+x23xCy=x3xDy=x3+x22x二、填空题(共4小题,每小题5分,共25分)11(5分)抛物线y2=4x的准线方程是 12(5分)已知4a=2,lgx=a,则x= 13(5分)设0,向量=(sin2,cos),=(1,cos),若=0,则tan= 14(5分)已知f(x)=,x0,若f1(x)=f(x),fn+1(x)=f(fn(x),nN+,则f2014(x)的表达式为 选考题(请在15-17三题中任选一题作答,如果多做,则按所做的第一题评分)不等式选做题15(5分)设a,b,m,nR,且a2+b2=5,ma+nb=5,则的最小值为 几何证明选做题16如图,ABC中,BC=6,以BC为直径的半圆分别交AB、AC于点E、F,若AC=2AE,则EF= 坐标系与参数方程选做题17在极坐标系中,点(2,)到直线的距离是 三、解答题(共6小题,共75分)18(12分)ABC的内角A、B、C所对的边分别为a,b,c()若a,b,c成等差数列,证明:sinA+sinC=2sin(A+C);()若a,b,c成等比数列,且c=2a,求cosB的值19(12分)四面体ABCD及其三视图如图所示,平行于棱AD,BC的平面分别交四面体的棱AB、BD、DC、CA于点E、F、G、H()求四面体ABCD的体积;()证明:四边形EFGH是矩形20(12分)在直角坐标系xOy中,已知点A(1,1),B(2,3),C(3,2),点P(x,y)在ABC三边围成的区域(含边界)上,且=m+n(m,nR)()若m=n=,求|;()用x,y表示mn,并求mn的最大值21(12分)某保险公司利用简单随机抽样方法,对投保车辆进行抽样,样本车辆中每辆车的赔付结果统计如下:赔付金额(元)01000200030004000车辆数(辆)500130100150120()若每辆车的投保金额均为2800元,估计赔付金额大于投保金额的概率;()在样本车辆中,车主是新司机的占10%,在赔付金额为4000元的样本车辆中,车主是新司机的占20%,估计在已投保车辆中,新司机获赔金额为4000元的概率22(13分)已知椭圆+=1(ab0)经过点(0,),离心率为,左右焦点分别为F1(c,0),F2(c,0)()求椭圆的方程;()若直线l:y=x+m与椭圆交于A、B两点,与以F1F2为直径的圆交于C、D两点,且满足=,求直线l的方程23(14分)设函数f(x)=lnx+,mR()当m=e(e为自然对数的底数)时,求f(x)的极小值;()讨论函数g(x)=f(x)零点的个数;()若对任意ba0,1恒成立,求m的取值范围2014年陕西省高考数学试卷(文科)参考答案与试题解析一、选择题(共10小题,每小题5分,共50分)1(5分)设集合M=x|x0,xR,N=x|x21,xR,则MN=()A0,1B(0,1)C(0,1D0,1)【分析】先解出集合N,再求两集合的交即可得出正确选项【解答】解:M=x|x0,xR,N=x|x21,xR=x|1x1,xR,MN=0,1)故选:D【点评】本题考查交的运算,理解好交的定义是解答的关键2(5分)函数f(x)=cos(2x+)的最小正周期是()ABC2D4【分析】由题意得=2,再代入复合三角函数的周期公式求解【解答】解:根据复合三角函数的周期公式得,函数f(x)=cos(2x+)的最小正周期是,故选:B【点评】本题考查了三角函数的周期性,以及复合三角函数的周期公式应用,属于基础题3(5分)已知复数z=2i,则z的值为()A5BC3D【分析】由z求出,然后直接利用复数代数形式的乘法运算求解【解答】解:由z=2i,得z=(2i)(2+i)=4i2=5故选:A【点评】本题考查了复数代数形式的乘法运算,是基础的计算题4(5分)根据如图所示的框图,对大于2的整数N,输出的数列的通项公式是()Aan=2nBan=2(n1)Can=2nDan=2n1【分析】根据框图的流程判断递推关系式,根据递推关系式与首项求出数列的通项公式【解答】解:由程序框图知:ai+1=2ai,a1=2,数列为公比为2的等比数列,an=2n故选:C【点评】本题考查了直到型循环结构的程序框图,根据框图的流程判断递推关系式是解答本题的关键5(5分)将边长为1的正方形以其一边所在直线为旋转轴旋转一周,所得几何体的侧面积是()A4B3C2D【分析】边长为1的正方形,绕其一边所在直线旋转一周,得到的几何体为圆柱,从而可求圆柱的侧面积【解答】解:边长为1的正方形,绕其一边所在直线旋转一周,得到的几何体为圆柱,则所得几何体的侧面积为:121=2,故选:C【点评】本题是基础题,考查旋转体的侧面积的求法,考查计算能力6(5分)从正方形四个顶点及其中心这5个点中任取2个点,则这2个点的距离小于该正方形边长的概率为()ABCD【分析】设正方形边长为1,则从正方形四个顶点及其中心这5个点中任取2个点,共有10条线段,4条长度为1,4条长度为,两条长度为,即可得出结论【解答】解:设正方形边长为1,则从正方形四个顶点及其中心这5个点中任取2个点,共有10条线段,4条长度为1,4条长度为,两条长度为,所求概率为=故选:B【点评】本题考查概率的计算,列举基本事件是关键7(5分)下列函数中,满足“f(x+y)=f(x)f(y)”的单调递增函数是()Af(x)=x3Bf(x)=3xCf(x)=xDf(x)=()x【分析】对选项一一加以判断,先判断是否满足f(x+y)=f(x)f(y),然后考虑函数的单调性,即可得到答案【解答】解:Af(x)=x3,f(y)=y3,f(x+y)=(x+y)3,不满足f(x+y)=f(x)f(y),故A错;Bf(x)=3x,f(y)=3y,f(x+y)=3x+y,满足f(x+y)=f(x)f(y),且f(x)在R上是单调增函数,故B正确;Cf(x)=,f(y)=,f(x+y)=,不满足f(x+y)=f(x)f(y),故C错;Df(x)=,f(y)=,f(x+y)=,满足f(x+y)=f(x)f(y),但f(x)在R上是单调减函数,故D错故选:B【点评】本题主要考查抽象函数的具体模型,同时考查幂函数和指数函数的单调性,是一道基础题8(5分)原命题为“若an,nN+,则an为递减数列”,关于其逆命题,否命题,逆否命题真假性的判断依次如下,正确的是()A真、真、真B假、假、真C真、真、假D假、假、假【分析】先根据递减数列的定义判定命题的真假,再判断否命题的真假,根据命题与其逆否命题同真性及四种命题的关系判断逆命题与逆否命题的真假【解答】解:an=an+1an,nN+,an为递减数列,命题是真命题;其否命题是:若an,nN+,则an不是递减数列,是真命题;又命题与其逆否命题同真同假,命题的否命题与逆命题是互为逆否命题,命题的逆命题,逆否命题都是真命题故选:A【点评】本题考查了四种命题的定义及真假关系,判断命题的真假及熟练掌握四种命题的真假关系是解题的关键9(5分)某公司10位员工的月工资(单位:元)为x1,x2,x10,其均值和方差分别为和s2,若从下月起每位员工的月工资增加100元,则这10位员工下月工资的均值和方差分别为()A,s2+1002B+100,s2+1002C,s2D+100,s2【分析】根据变量之间均值和方差的关系和定义,直接代入即可得到结论【解答】解:由题意知yi=xi+100,则=(x1+x2+x10+10010)=(x1+x2+x10)=+100,方差s2=(x1+100(+100)2+(x2+100(+100)2+(x10+100(+100)2=(x1)2+(x2)2+(x10)2=s2故选:D【点评】本题主要考查样本数据的均值和方差之间的关系,利用均值和方差的定义是解决本题的关键,要求熟练掌握相应的计算公式10(5分)如图,修建一条公路需要一段环湖弯曲路段与两条直道平滑连接(相切),已知环湖弯曲路段为某三次函数图象的一部分,则该函数的解析式为()Ay=x3x2xBy=x3+x23xCy=x3xDy=x3+x22x【分析】由题设,“需要一段环湖弯曲路段与两条直道平滑连接(相切)“可得出此两点处的切线正是两条直道所在直线,由此规律验证四个选项即可得出答案【解答】解:由函数图象知,此三次函数在(0,0)上处与直线y=x相切,在(2,0)点处与y=3x6相切,下研究四个选项中函数在两点处的切线A、,将0,2代入,解得此时切线的斜率分别是1,3,符合题意,故A正确;B、,将0代入,此时导数为3,不为1,故B错误;C、,将2代入,此时导数为1,与点(2,0)处切线斜率为3矛盾,故C错误;D、,将0代入,此时导数为2,与点(0,0)处切线斜率为1矛盾,故D错误故选:A【点评】本题考查导数的几何意义在实际问题中的应用,导数的几何意义是导数主要应用之一二、填空题(共4小题,每小题5分,共25分)11(5分)抛物线y2=4x的准线方程是x=1【分析】先根据抛物线的标准方程形式求出p,再根据开口方向,写出其准线方程【解答】解:2p=4,p=2,开口向右,准线方程是x=1故答案为x=1【点评】根据抛物线的方程求其焦点坐标和准线方程,一定要先化为标准形式,求出的值,再确定开口方向,否则,极易出现错误12(5分)已知4a=2,lgx=a,则x=【分析】化指数式为对数式求得a,代入lgx=a后由对数的运算性质求得x的值【解答】解:由4a=2,得,再由lgx=a=,得x=故答案为:【点评】本题考查了指数式与对数式的互化,考查了对数的运算性质,是基础题13(5分)设0,向量=(sin2,cos),=(1,cos),若=0,则tan=【分析】由条件利用两个向量的数量积公式求得 2sincoscos2=0,再利用同角三角函数的基本关系求得tan【解答】解:=sin2cos2=2sincoscos2=0,0,2sincos=0,tan=,故答案为:【点评】本题主要考查两个向量的数量积公式,同角三角函数的基本关系,属于基础题14(5分)已知f(x)=,x0,若f1(x)=f(x),fn+1(x)=f(fn(x),nN+,则f2014(x)的表达式为【分析】由题意,可先求出f1(x),f2(x),f3(x),归纳出fn(x)的表达式,即可得出f2014(x)的表达式【解答】解:由题意故f2014(x)=故答案为:【点评】本题考查逻辑推理中归纳推理,由特殊到一般进行归纳得出结论是此类推理方法的重要特征选考题(请在15-17三题中任选一题作答,如果多做,则按所做的第一题评分)不等式选做题15(5分)设a,b,m,nR,且a2+b2=5,ma+nb=5,则的最小值为【分析】根据柯西不等式(a2+b2)(c2+d2)(ac+bd)2当且仅当ad=bc取等号,问题即可解决【解答】解:由柯西不等式得,(ma+nb)2(m2+n2)(a2+b2)a2+b2=5,ma+nb=5,(m2+n2)5的最小值为故答案为:【点评】本题主要考查了柯西不等式,解题关键在于清楚等号成立的条件,属于中档题几何证明选做题16如图,ABC中,BC=6,以BC为直径的半圆分别交AB、AC于点E、F,若AC=2AE,则EF=3【分析】证明AEFACB,可得,即可得出结论【解答】解:由题意,以BC为直径的半圆分别交AB、AC于点E、F,AEF=C,EAF=CAB,AEFACB,BC=6,AC=2AE,EF=3故答案为:3【点评】本题考查三角形相似的判定与运用,考查学生的计算能力,属于基础题坐标系与参数方程选做题17在极坐标系中,点(2,)到直线的距离是1【分析】把极坐标化为直角坐标,再利用点到直线的距离公式即可得出【解答】解:点P(2,)化为=,y=2=1,P直线展开化为:=1,化为直角坐标方程为:,即=0点P到直线的距离d=1故答案为:1【点评】本题考查了极坐标化为直角坐标的公式、点到直线的距离公式,考查了推理能力与计算能力,属于中档题三、解答题(共6小题,共75分)18(12分)ABC的内角A、B、C所对的边分别为a,b,c()若a,b,c成等差数列,证明:sinA+sinC=2sin(A+C);()若a,b,c成等比数列,且c=2a,求cosB的值【分析】()由a,b,c成等差数列,利用等差数列的性质得到a+c=2b,再利用正弦定理及诱导公式变形即可得证;()由a,b,c成等比数列,利用等比数列的性质列出关系式,将c=2a代入表示出b,利用余弦定理表示出cosB,将三边长代入即可求出cosB的值【解答】解:()a,b,c成等差数列,a+c=2b,由正弦定理得:sinA+sinC=2sinB,sinB=sin(A+C)=sin(A+C),则sinA+sinC=2sin(A+C);()a,b,c成等比数列,b2=ac,将c=2a代入得:b2=2a2,即b=a,由余弦定理得:cosB=【点评】此题考查了余弦定理,等差、等比数列的性质,熟练掌握余弦定理是解本题的关键19(12分)四面体ABCD及其三视图如图所示,平行于棱AD,BC的平面分别交四面体的棱AB、BD、DC、CA于点E、F、G、H()求四面体ABCD的体积;()证明:四边形EFGH是矩形【分析】()证明AD平面BDC,即可求四面体ABCD的体积;()证明四边形EFGH是平行四边形,EFHG,即可证明四边形EFGH是矩形【解答】()解:由题意,BDDC,BDAD,ADDC,BD=DC=2,AD=1,AD平面BDC,四面体ABCD的体积V=;()证明:BC平面EFGH,平面EFGH平面BDC=FG,平面EFGH平面ABC=EH,BCFG,BCEH,FGEH同理EFAD,HGAD,EFHG,四边形EFGH是平行四边形,AD平面BDC,ADBC,EFFG,四边形EFGH是矩形【点评】本题考查线面垂直,考查线面平行性质的运用,考查学生分析解决问题的能力,属于中档题20(12分)在直角坐标系xOy中,已知点A(1,1),B(2,3),C(3,2),点P(x,y)在ABC三边围成的区域(含边界)上,且=m+n(m,nR)()若m=n=,求|;()用x,y表示mn,并求mn的最大值【分析】()由点的坐标求出向量和的坐标,结合m=n=,再由=m+n求得的坐标,然后由模的公式求模;()由=m+n得到,作差后得到mn=yx,令yx=t,然后利用线性规划知识求得mn的最大值【解答】解:()A(1,1),B(2,3),C(3,2),又m=n=,;(),两式相减得,mn=yx令yx=t,由图可知,当直线y=x+t过点B(2,3)时,t取得最大值1,故mn的最大值为:1【点评】本题考查了平面向量的数乘及坐标加法运算,考查了简单的线性规划,考查了数形结合的解题思想方法,是中档题21(12分)某保险公司利用简单随机抽样方法,对投保车辆进行抽样,样本车辆中每辆车的赔付结果统计如下:赔付金额(元)01000200030004000车辆数(辆)500130100150120()若每辆车的投保金额均为2800元,估计赔付金额大于投保金额的概率;()在样本车辆中,车主是新司机的占10%,在赔付金额为4000元的样本车辆中,车主是新司机的占20%,估计在已投保车辆中,新司机获赔金额为4000元的概率【分析】()设A表示事件“赔付金额为3000元,”B表示事件“赔付金额为4000元”,以频率估计概率,求得P(A),P(B),再根据投保额为2800元,赔付金额大于投保金额得情形是3000元和4000元,问题得以解决()设C表示事件“投保车辆中新司机获赔4000元”,分别求出样本车辆中车主为新司机人数和赔付金额为4000元的车辆中车主为新司机人数,再求出其频率,最后利用频率表示概率【解答】解:()设A表示事件“赔付金额为3000元,”B表示事件“赔付金额为4000元”,以频率估计概率得P(A)=,P(B)=,由于投保额为2800元,赔付金额大于投保金额得情形是3000元和4000元,所以其概率为P(A)+P(B)=0.15+0.12=0.27()设C表示事件“投保车辆中新司机获赔4000元”,由已知,样本车辆中车主为新司机的有0.11000=100,而赔付金额为4000元的车辆中车主为新司机的有0.2120=24,所以样本中车辆中新司机车主获赔金额为4000元的频率为,由频率估计概率得P(C)=0.24【点评】本题主要考查了用频率来表示概率,属于中档题22(13分)已知椭圆+=1(ab0)经过点(0,),离心率为,左右焦点分别为F1(c,0),F2(c,0)()求椭圆的方程;()若直线l:y=x+m与椭圆交于A、B两点,与以F1F2为直径的圆交于C、D两点,且满足=,求直线l的方程【分析】()由题意可得,解出即可()由题意可得以F1F2为直径的圆的方程为x2+y2=1利用点到直线的距离公式可得:圆心到直线l的距离d及d1,可得m的取值范围利用弦长公式可得|CD|=2设A(x1,y1),B(x2,y2)把直线l的方程与椭圆的方程联立可得根与系数的关系,进而得到弦长|AB|=由=,即可解得m【解答】解:()由题意可得,解得,c=1,a=2椭圆的方程为()由题意可得以F1F2为直径的圆的方程为x2+y2=1圆心到直线l的距离d=,由d1,可得(*)|CD|=2=设A(x1,y1),B(x2,y2)联立,化为x2mx+m23=0,可得x1+x2=m,|AB|=由=,得,解得满足(*)因此直线l的方程为【点评】本题中考查了椭圆与圆的标准方程及其性质、直线与椭圆及圆相交的弦长问题、点到直线的距离公式等基础知识与基本技能方法,考查了推理能力和计算能力,属于难题23(14分)设函数f(x)=lnx+,mR()当m=e(e为自然对数的底数)

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论