




已阅读5页,还剩11页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
函数y=f(x)在给定区间G上,当x1、x2G且x1x2时,函数单调性判定,单调函数的图象特征,1)都有f(x1)f(x2),,则f(x)在G上是增函数;,2)都有f(x1)f(x2),,则f(x)在G上是减函数;,若f(x)在G上是增函数或减函数,,增函数,减函数,则f(x)在G上具有严格的单调性。,G称为单调区间,G=(a,b),复习引入:,(1)函数的单调性也叫函数的增减性;,(2)函数的单调性是对某个区间而言的,它是个局部概念。这个区间是定义域的子集。,(3)单调区间:针对自变量x而言的。若函数在此区间上是增函数,则为单调递增区间;若函数在此区间上是减函数,则为单调递减区间。,以前,我们用定义来判断函数的单调性.在假设x1x2的前提下,比较f(x1)f(x2)与的大小,在函数y=f(x)比较复杂的情况下,比较f(x1)与f(x2)的大小并不很容易.如果利用导数来判断函数的单调性就比较简单.,判断下列函数的单调性,并求出单调区间:,1.3.1函数的单调性与导数,观察:,下图(1)表示高台跳水运动员的高度h随时间t变化的函数的图象,图(2)表示高台跳水运动员的速度v随时间t变化的函数的图象.运动员从起跳到最高点,以及从最高点到入水这两段时间的运动状态有什么区别?,a,a,b,b,t,t,v,h,O,O,运动员从起跳到最高点,离水面的高度h随时间t的增加而增加,即h(t)是增函数.相应地,从最高点到入水,运动员离水面的高度h随时间t的增加而减少,即h(t)是减函数.相应地,(1),(2),x,y,O,x,y,O,x,y,O,x,y,O,y=x,y=x2,y=x3,观察下面一些函数的图象,探讨函数的单调性与其导函数正负的关系.,在某个区间(a,b)内,如果,那么函数在这个区间内单调递增;如果,那么函数在这个区间内单调递减.,如果恒有,则是常数。,题1已知导函数的下列信息:,当1x4,或x1时,当x=4,或x=1时,试画出函数的图象的大致形状.,解:,当1x4,或x0(或f(x)0)(3)确认并指出递增区间(或递减区间),2、证明可导函数f(x)在(a,b)内的单调性的方法:(1)求f(x)(2)确认f(x)在(a,b)内的符号(3)作出结论,例3如图,水以常速(即单位时间内注入水的体积相同)注入下面四种底面积相同的容器中,请分别找出与各容器对应的水的高度h与时间t的函数关系图象.,(A),(B),(C),(D),h,t,O,h,t,O,h,t,O,h,t,O,一般地,如果一个函数在某一范围内导数的绝对值较大,那么函数在这个范围内变化得快,这时,函数的图象就比较“陡峭”(向上或向下);反之,函数的图象就“平缓”一些.,如图,函数在或内的图象“陡峭”,在或内的图象平缓.,练习,判断下列函数的单调性,并求出单调区间:,练习,2.函数的图象如图所示,试画出导函数图象的大致形状,练习,3.讨论二次函数的单调区间.,解:,由,得,即函数的递增区间是;相应地,函数的递减区间是,由,得,即函数的递
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025年中考历史总复习世界历史全册知识提纲(下)
- 减速机应用与维护培训
- 兽药电话营销产品培训体系构建
- 城市交通规划合同管理知识产权咨询重点基础知识点
- 车辆质押合同和借款协议
- 转让京东店铺合同协议
- 道路绿化树木合同协议
- 涂改离婚协议书
- 进口食品代理合同协议
- 车位物业服务合同协议
- DB32T3562-2019桥梁结构健康监测系统设计规范
- 当事人银行结算账户确认书模板
- 《糖尿病的预防》课件
- 酒店工伤预防知识培训课件
- 全媒体运营师-国家职业标准(2023年版)
- 中小学生心理健康诊断测验 MHT(附测试量表及评分细则)
- GLB-2防孤岛保护装置试验报告
- 职业生涯规划家庭教育课
- 文化与科技的融合传统与现代的碰撞
- 月季整枝的修剪对策
- 景宁畲族自治县C波段雷达系统建设项目环境影响报告
评论
0/150
提交评论