




已阅读5页,还剩27页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
,5.2二元函数的偏导数与全微分,一、偏导数二、高阶偏导数三、全微分四、全微分在近似计算中的应用,1,5.2二元函数的偏导数与全微分,一、偏导数,1、偏导数的定义,2,5.2二元函数的偏导数与全微分,3,5.2二元函数的偏导数与全微分,4,5.2二元函数的偏导数与全微分,偏导数的概念可以推广到二元以上函数,如函数在点处,5,5.2二元函数的偏导数与全微分,例1求,解法1,解法2,在点(1,2)处的偏导数.,6,5.2二元函数的偏导数与全微分,例2设,证,例3求,的偏导数.,解,求证:,7,5.2二元函数的偏导数与全微分,偏导数记号是一个,例4已知理想气体的状态方程,求证:,证,说明:,(R为常数),不能看作,分子与分母的商!,此例表明,整体记号,8,5.2二元函数的偏导数与全微分,2.偏导数的几何意义,如图,9,5.2二元函数的偏导数与全微分,(1)几何意义:,10,5.2二元函数的偏导数与全微分,(2)偏导数存在与连续的关系,?,但函数在该点处并不连续.,偏导数存在连续.,一元函数中在某点可导连续,,多元函数中在某点偏导数存在连续,,11,则称它们是z=f(x,y),5.2二元函数的偏导数与全微分,二、高阶偏导数,设z=f(x,y)在域D内存在连续的偏导数,若这两个偏导数仍存在偏导数,,的二阶偏导数.,按求导顺序不同,有下列四个二阶偏导,数:,12,5.2二元函数的偏导数与全微分,类似可以定义更高阶的偏导数.,例如,z=f(x,y)关于x的三阶偏导数为,z=f(x,y)关于x的n1阶偏导数,再关于y的一阶,偏导数为,第二、三个偏导数称为混合偏导数.,二阶及二阶以上的偏导数统称为高阶偏导数.,13,5.2二元函数的偏导数与全微分,解,14,5.2二元函数的偏导数与全微分,例6求函数,解,注意:此处,但这一结论并不总成立.,的二阶偏导数及,15,5.2二元函数的偏导数与全微分,问题,例如,对三元函数u=f(x,y,z),当三阶混合偏导数,在点(x,y,z)连续时,有,16,5.2二元函数的偏导数与全微分,证,17,5.2二元函数的偏导数与全微分,例8证明函数,满足,证,利用对称性,有,方程,18,5.2二元函数的偏导数与全微分,三、全微分,全增量,19,5.2二元函数的偏导数与全微分,定义2如果函数z=f(x,y)在点(x,y),可表示成,其中A,B不依赖于x,y,仅与x,y有关,,称为函数,在点(x,y)的全微分,记作,若函数在域D内各点都可微,则称函数,f(x,y)在点(x,y)可微,,的全增量,则称此函数在D内可微.,20,5.2二元函数的偏导数与全微分,证,“可微”与“连续”的关系?,21,5.2二元函数的偏导数与全微分,“可微”与“偏导数存在”的关系?,22,5.2二元函数的偏导数与全微分,同样可证,证由全增量公式,得到对x的偏增量,因此有,23,5.2二元函数的偏导数与全微分,反例:函数,易知,但,注:定理3的逆定理不成立.,偏导数存在函数不一定可微!,因此,函数在点不可微.,24,5.2二元函数的偏导数与全微分,定理4(可微的充分条件),若函数,的偏导数,则函数,在点,连续,,在该点可微.且,全微分的定义可推广到三元及三元以上函数,.,例如,三元函数,的全微分为:,25,5.2二元函数的偏导数与全微分,例9计算函数,在点(2,1)处的全微分.,解,例10计算函数,的全微分.,解,26,5.2二元函数的偏导数与全微分,可知当,*四、全微分在数值计算中的应用,近似计算:,由全微分定义,较小时,及,有近似等式:,(可用于近似计算;误差分析),(可用于近似计算),27,5.2二元函数的偏导数与全微分,例11计算,的近似值.,解设,则,取,则,28,5.2二元函数的偏导数与全微分,半径由20cm增大,解已知,即受压后圆柱体体积减少了,例12有一圆柱体受压后发生形变,到20.05cm,则,高度由100cm减少到99cm,体积的近似改变量.,求此圆柱体,29,5.2二元函数的偏导数与全微分,偏导数的定义,偏导数的计算、偏导数的几何意义,高阶偏导数,(偏增量比的极限),纯偏导,混合偏导,(相等的条件),内容小结,30,5.2二元
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025四川九强通信科技有限公司招聘射频工程师测试笔试历年参考题库附带答案详解
- 2025云南德宏州国有资本投资控股集团有限公司招聘1人信息笔试历年参考题库附带答案详解
- 2025中国中原社会招聘笔试历年参考题库附带答案详解
- 2025福建漳州市漳浦县赤湖第二中心幼儿园顶岗教师招聘1人模拟试卷(含答案详解)
- 2025广东佛山市三水海江昇平建设工程有限公司第一批招聘企业工作人员拟聘用人员(第一批)考前自测高频考点模拟试题及参考答案详解1套
- 2025年珲春市面向普通高校毕业生招聘事业单位工作人员(45人)模拟试卷附答案详解(黄金题型)
- 2025甘肃临夏县招聘警务辅助人员30人考前自测高频考点模拟试题及1套完整答案详解
- 2025年甘肃省嘉峪关市事业单位集中引进高层次和急需紧缺人才50人(含教育系统)模拟试卷附答案详解(考试直接用)
- 2025河南陆军第八十三集团军医院招聘34人考前自测高频考点模拟试题及答案详解(历年真题)
- 2025年潍坊诸城市恒益燃气有限公司公开招聘工作人员考前自测高频考点模拟试题及参考答案详解
- 精神分裂症并发糖尿病患者护理查房
- 当幸福来敲门全剧中英文台词
- (正式版)JBT 9229-2024 剪叉式升降工作平台
- 曲臂车操作规程含曲臂式高空作业车专项施工方案报审表
- DBJ-T 13-210-2023 福建省房屋市政工程基桩检测试验文件管理标准
- Unit+2+短语背诵版 高中英语北师大版(2019)必修第一册
- 质量月报范本
- FZ/T 52051-2018低熔点聚酯(LMPET)/聚酯(PET)复合短纤维
- 【精品】2020年职业病诊断医师资格培训考试题
- 派车单(标准样本)
- 广东省建筑施工安全管理资料统一用表2021年版(原文格式版)
评论
0/150
提交评论