




已阅读5页,还剩15页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
黑龙江省东南联合体2020学年高二数学下学期期末考试试题 理(含解析)一、选择题(每小题5分,共60分)1.已知复数,则的共轭复数()A. B. C. D. 【答案】A【解析】【分析】对复数进行化简,然后得到,再求出共轭复数.【详解】因为,所以,所以的共轭复数故选A项.【点睛】本题考查复数的四则运算,共轭复数的概念,属于简单题.2.已知集合,则()A. B. C. D. 【答案】C【解析】【分析】利用对数函数的单调性对集合化简得x|0x1,然后求出AB即可详解】x|0x2,AB1,故选:C【点睛】考查对数不等式的解法,以及集合的交集及其运算3.指数函数是增函数,而是指数函数,所以是增函数,关于上面推理正确的说法是( )A. 推理的形式错误B. 大前提是错误的C. 小前提是错误的D. 结论是真确的【答案】B【解析】分析: 指数函数是R上的增函数,这个说法是错误的,要根据所给的底数的取值不同分类说出函数的不同单调性,有演绎推理的定义可知,大前提错误。详解:指数函数是R上的增函数,这个说法是错误的,若,则是增函数,若,则是减函数所以大前提是错误的。所以B选项是正确的。点睛:本题主要考查指数函数的单调性和演绎推理,意在考查三段论的推理形式和指数函数的图像性质,属于基础题。4.已知 ,则它们的大小关系是A. B. C. D. 【答案】A【解析】由指数函数的性质可得 ,而,因此,即。选A。5.已知函数为奇函数,则( )A. B. C. D. 【答案】A【解析】【分析】根据奇函数性质,利用计算得到,再代入函数计算【详解】由函数表达式可知,函数在处有定义,则,则,.故选A.【点睛】解决本题的关键是利用奇函数性质,简化了计算,快速得到答案.6.函数 的最小值为0,则m的取值范围是()A. (1,2)B. (1,2)C. 1,2)D. 1,2)【答案】B【解析】【分析】化简函数为,根据函数单调性以及在时取得最小值0,求出的范围.【详解】函数在区间(1,)上是减函数当x2时,y0.根据题意x(m,n时,.所以m的取值范围是1m2,故选B.【点睛】该题所考查的是利用函数在某个区间上的最值,来确定区间对应的位置,涉及到的知识点有反比例型函数的单调性,确定最值在哪个点处取,从而求得对应的参数的取值范围,属于简单题目.7.若,则的大小关系为()A. B. C. D. 【答案】B【解析】【分析】利用微积分基本定理,计算出的值,由此比较出三者大小关系.【详解】依题意,故,所以选B.【点睛】本小题主要考查微积分基本定理计算定积分,属于基础题.8.若函数f(x)=(k-1)ax-a-x(a0,a1)在R上既是奇函数,又是减函数,则g(x)=loga(x+k)的图象是()A. B. C. D. 【答案】A【解析】【分析】根据函数是一个奇函数,函数在原点处有定义,得到函数的图象一定过原点,求出k的值,根据函数是一个减函数,得出底数的范围,得到结果【详解】函数f(x)(k1)axax(a0,a1)在R上是奇函数,f(0)0k2,又f(x)axax为减函数,所以1a0,所以g(x)loga(x+2),定义域为,且递减,故选A.【点睛】本题考查函数奇偶性和单调性,即对数函数的性质,本题解题的关键是看出题目中所出现的两个函数性质的应用9.若函数在区间上单调递增,则实数的取值范围是( )A. B. C. D. 【答案】D【解析】【详解】试题分析:,函数在区间单调递增,在区间上恒成立,而在区间上单调递减,的取值范围是故选:D考点:利用导数研究函数的单调性.10.若函数是定义在R上的偶函数,在上是减函数,且,则使得的的取值范围是()A. B. C. D. 【答案】B【解析】【分析】由是定义在R上的偶函数,且在上是减函数,得到在上是增函数,从而根据单调性和零点,得到的解集.【详解】是定义在R上的偶函数,因为在上是减函数所以在上是增函数,因为,所以所以的解集为故选B项。【点睛】本题考查函数的奇偶性,单调性,零点,根据函数的基本性质求不等式的解集,属于简单题.11.定义在上的偶函数满足,当时,设函数,则函数与的图像所有交点的横坐标之和为()A. 2B. 4C. 6D. 8【答案】B【解析】【分析】根据f(x)的周期和对称性得出函数图象,根据图象和对称轴得出交点个数【详解】f(x+1)f(x),f(x+2)f(x+1)f(x),f(x)的周期为2f(1x)f(x1)f(x+1),故f(x)的图象关于直线x1对称又g(x)()|x1|(1x3)的图象关于直线x1对称,作出f(x)的函数图象如图所示:由图象可知两函数图象在(1,3)上共有4个交点,故选:B【点睛】本题考查了函数图象变换,考查了函数对称性、周期性的判断及应用,考查了函数与方程的思想及数形结合思想,属于中档题12.如图,已知直线与曲线相切于两点,函数 ,则函数( )A. 有极小值,没有极大值B. 有极大值,没有极小值C. 至少有两个极小值和一个极大值D. 至少有一个极小值和两个极大值【答案】C【解析】【分析】根据导数的几何意义,讨论直线与曲线在切点两侧的导数与的大小关系,从而得出的单调区间,结合极值的定义,即可得出结论。【详解】如图,由图像可知,当时,单调递增,所以有且。对于=,有,所以在时单调递减;当时,单调递减,所以有且。有,所以在时单调递增;所以是的极小值点。同样的方法可以得到是的极小值点,是的极大值点。故答案选C。【点睛】本题主要考查函数导数的几何意义,函数导数与单调性,与函数极值之间的关系,属于基础题。二、填空题(每小题5分,共计20分)13.已知命题,则为_.【答案】,【解析】【分析】根据特称命题“xA,p(A)”的否定是“xA,非p(A)”求解【详解】命题,为特称命题故为,故答案为,【点睛】本题考查的知识点是命题的否定,其中熟练掌握特称命题的否定方法“xA,p(A)”的否定是“xA,非p(A)”,是解答本题的关键14.幂函数的图像过点,则的减区间为_.【答案】【解析】【分析】设幂函数的解析式为,代入点,得到的值,得到的解析式和定义域,再写出的解析式,研究其定义域和单调区间,从而求出的减区间.【详解】设幂函数的解析式为代入点,得,所以所以幂函数为,定义域为,所以,则需要即其定义域为或,而的对称轴为所以其单调减区间为所以的减区间为.【点睛】本题考查求幂函数的解析式,求具体函数的单调区间,属于简单题.15.极坐标系中,曲线上的点到直线的距离的最大值是 .【答案】7【解析】试题分析:由线方程化为:,即,化为:,圆心坐标为(2,0),半径为r2,直线方程化为:80,圆心到直线的距离为:5,所以,最大距离为:527.考点:1、极坐标方程化为普通方程;2、点到直线的距离.16.函数,对任意,恒有,则的最小值为_.【答案】【解析】,当时,单调递减;当时,单调递增。当时,有最大值,且。又,。由题意得等价于。的最小值为。答案:三、解答题(共六题70分)17.已知为实数(1)若,求;(2)若,求,的值【答案】(1);(2).【解析】【分析】把代入计算的值,再求;第二步把代入,整理后利用复数相等列方程求出的值.【详解】(1) ,;(2), , , ,故.18.如图,已知四边形ABCD与四边形BDEF均为菱形,且求证:平面BDEF;求二面角的余弦值【答案】(1)见证明;(2).【解析】【分析】设AC、BD交于点O,连结OF、DF,推导出,由此能证明平面BDEF以OA为x轴,OB为y轴,OF为z轴,建立空间直角坐标系,利用向量法能求出二面角的余弦值【详解】设AC、BD交于点O,连结OF、DF,四边形ABCD与四边形BDEF均为菱形,且,四边形ABCD与四边形BDEF均为菱形,平面BDEF,平面ABCD,以OA为x轴,OB为y轴,OF为z轴,建立空间直角坐标系,设,则0,0,1,0,1,设平面ABF的法向量y,则,取,得,设平面BCF的法向量y,则,取,得,设二面角的平面角为,由图可知为钝角则二面角的余弦值为【点睛】本题考查线面垂直的证明,考查二面角的余弦值的求法,考查二面角的求法,考查空间中线线、线面、面面间的位置关系等基础知识,考查运算求解能力,是中档题19.为了调查中学生每天玩游戏的时间是否与性别有关,随机抽取了男、女学生各50人进行调查,根据其日均玩游戏的时间绘制了如下的频率分布直方图.(1)求所调查学生日均玩游戏时间在分钟的人数;(2)将日均玩游戏时间不低于60分钟的学生称为“游戏迷”,已知“游戏迷”中女生有6人;根据已知条件,完成下面的列联表,并判断能否在犯错误的概率不超过0.05的前提下认为“游戏迷”和性别关系;非游戏迷游戏迷合计男女合计在所抽取的“游戏迷”中按照分层抽样的方法抽取10人,再在这10人中任取9人进行心理干预,求这9人中男生全被抽中的概率.附:(其中为样本容量).0.150.100.0500250.0102.07227063.8415.0246.635【答案】(1)人(2)填表见解析,能在犯错误的概率不超过0.05的前提下认为“游戏迷”和性别有关.【解析】【分析】(1)计算日均玩游戏时间在分钟的频率,再乘以总人数即可; (2)计算 “游戏迷”有人,由于“游戏迷”中女生有6人,得男生有14人,即可列表,计算观测值,对照临界值得出结论;利用古典概型求解即可【详解】(1)日均玩游戏时间在分钟的频率为,所以,所调查学生日均玩游戏时间在分钟的人数为.(2)“游戏迷”的频率为,共有“游戏迷”人,由于“游戏迷”中女生有6人,故男生有14人.根据男、女学生各有50人,得列联表如下:非游戏迷游戏迷合计男361450女44650合计8020100.故能在犯错误的概率不超过0.05的前提下认为“游戏迷”和性别有关.“游戏迷”中女生有6人,男生有14人,按照分层抽样的方法抽取10人,则女生有3人,男生有7人.从中任取9人,只剩1人,则共有 10种基本情况,记这9人中男生全被抽中为事件A,则有两名女生被选中,共有种基本情况,因此所求事件A的概率.【点睛】本题考查了列联表与独立性检验的应用问题,也考查了频率分布直方图与古典概型的概率计算问题,是基础题20.已知椭圆的焦距为2,左右焦点分别为,以原点为圆心,以椭圆的短半轴长为半径的圆与直线相切(1)求椭圆的方程;(2)设不过原点的直线与椭圆C交于两点,若直线与的斜率分别为,且,求证:直线过定点,并求出该定点的坐标;【答案】(1)(2)线恒过定点,详见解析【解析】【分析】(1)根据焦距得到,根据圆心到直线的距离得到,由得到,从而得到椭圆方程;(2)直线,联立得到,然后表示,代入韦达定理,得到和的关系,从而得到直线过的定点.【详解】(1)由题意可得,即,由直线与圆相切,可得,解得,即有椭圆的方程为;(2)证明:设,将直线代入椭圆,可得,即有,由,即有,代入韦达定理,可得,化简可得,则直线的方程为,即,故直线恒过定点;【点睛】本题考查求椭圆方程,直线与椭圆的关系,椭圆中的定点问题,属于中档题.21.已知,(1)如果函数的单调递减区间为,求函数的解析式;(2)在(1)的条件下,求函数的图象在点处的切线方程;(3)若不等式恒成立,求实数a的取值范围【答案】(1)(2)(3)【解析】【分析】(1)求g(x)的导数,利用函数g(x)单调减区间为(,1),即是方程g(x)0的两个根然后解a即可(2)利用导数的几何意义求切线方程(3)将不等式2f(x)g(x)+2成立,转化为含参问题恒成立,然后利用导数求函数的最值即可【详解】(1)由题意的解集是:即的两根分别是,1将或代入方程得(2)由(1)知:,点处的切线斜率,函数的图象在点处的切线方程为:,即(3),即:对上恒成立可得对上恒成立设,则令,得或(舍)当时,;当时,当时,取得最大值的取值范围是【点睛】本题主要考查利用导数研究函数的性质,要求熟练掌握导数和函数单调性,最值之间的关系,考查学生的运算能力对含有参数恒成立问题,则需要转化为最值恒成立选修部分:二选一(本题10分)22.在平面直角坐标系xOy中,曲线M的参数方程为(t为参数,且t0),以坐标原点为极点,x轴正半轴为极轴建立极坐标系,已知曲线C的极坐标方程为4cos(1)将曲线M的参数方程化为普通方程,并将曲线C的极坐标方程化为直角坐标方程;(2)求曲线M与曲线C交点的极坐标(0,02)【答案】(1)曲线的普通方程为(或)曲线的直角坐标方程为.(2)交点极坐标为.【解析】【详解】(1)先求出,再代入消元将曲线的参数方程化为普通方程,根据将,.曲线的极坐标方程化为直角坐标方程;(2)先求曲线与曲线交点的直角坐标,再化为极坐标.(1),即,又,或,曲线的普通方程为(或).,即曲线的直角坐标方程为.(2)由得,(舍去),则交点的直角坐标为,极坐标为.【点睛】本题考查曲线的普通方程、直角坐标方程的求法,考查两曲线交点的极坐
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 七彩课堂下册数学试卷
- 政府茶叶采摘活动方案策划(3篇)
- 五一饮料促销活动方案策划(3篇)
- 气泡焊接施工方案(3篇)
- 云南白酒酒窖施工方案(3篇)
- 隐蔽工程房屋施工方案(3篇)
- 心理电影剪辑活动策划方案(3篇)
- 基础安全施工方案(3篇)
- 住宅夹层施工方案(3篇)
- 老年骨质疏松症的护理
- 2024-2025学年湖北省武汉市高一上学期1月期末考试英语试题(解析版)
- 既有供暖蒸汽管网及设施改造项目建议书(参考范文)
- 2025-2030中国细胞分选机行业市场发展趋势与前景展望战略研究报告
- 中国特色社会主义知识点总结中职高考政治一轮复习
- 马工程西方经济学(精要本第三版)教案
- 2024年家政服务业职业技能大赛家庭照护赛项技术工作文件
- 电信装维人员服务规范
- 2025年水文勘测工(中级)职业技能考试题(附答案)
- 加油站气象灾害防御制度
- 企业事故隐患内部报告奖励制度
- 部编语文八年级培训
评论
0/150
提交评论