




已阅读5页,还剩11页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
精品文档2017届湖南长沙长郡中学高三入学考试数学(文)试题一、选择题1设全集,集合,则( )A B C D【答案】A【解析】试题分析:,故选A.【考点】集合的运算.2设是虚数单位,则复数( )A B C D【答案】B【解析】试题分析:,故选B.【考点】复数的运算.3已知,则( )A1 B C D【答案】C【解析】试题分析:因为,所以,故选C.【考点】向量的坐标运算.4分别在区间和内任取一个实数,依次记为和,则的概率为( )A B C D【答案】A【解析】试题分析:分别在区间和内任取一个实数,依次记为和,则点构成的平面区域为一矩形,在矩形内且的区域为梯形,如下图所示,所以所求概率,故选A.【考点】几何概型.5在如图所示的算法流程图中,输出的值为( )A11 B12 C13 D15【答案】D【解析】试题分析:此程序框图所表示的算法功能为,故选D.【考点】程序框图.6将函数的图象向左平移个单位后,得到的图象可能为( )【答案】D.【解析】试题分析:将函数的图象向左平移个单位后,得到的函数解析式为,故选D.【考点】1.图象的平移变换;2.三角函数的图象与性质.7某棱锥的三视图(单位:)如图所示,则该棱锥的体积等于( )A B C D【答案】B【解析】试题分析:由三视图可知,该几何体为如下图所示的四棱锥,所以其体积,故选B.【考点】1.三视图;2.多面体的体积.8已知点和在直线的同侧,则直线倾斜角的取值范围是( )A B C D【答案】D【解析】试题分析:因为点和在直线的同侧,所以,即,所以,又直线的斜率,即,所以倾斜角的范围为,故选D.【考点】1.直线的倾斜角与斜率;2.线性规划.9若不等式组表示的区域,不等式表示的区域为,向区域均匀随机撒360颗芝麻,则落在区域中芝麻约为( )A114 B10 C150 D50【答案】A【解析】试题分析:在坐标系内作出可行域如下图所示,其中芝麻落在区域内的概率为,所以落在区域中芝麻约为,故选A.【考点】1.线性规划;2.几何概型.【名师点睛】本题考查几何概型与线性规划,属中档题.概率问题是高考的必考见容,概率问题通常分为古典概型与几何概型两种,几何概型求概率是通过线段的长度比或区域的面积比、几何体的体积比求解的,本题是用的区域的面积比,但求面积是通过线性规划相关知识来完成的,把线性规划与几何概型有机的结合在一起是本题的亮点.10已知双曲线的右焦点也是抛物线的焦点,与的一个交点为,若轴,则双曲线的离心率为( )A B C D【答案】A【解析】试题分析:由题意可知,所以,即,所以,解之得,故选A.【考点】1.双曲线的标准方程与几何性质;2.抛物线的标准方程与几何性质.11已知函数且,则( )A50 B60 C70 D80【答案】A【解析】试题分析:由题意可知,所以,故选A.【考点】1.数列的表示;2.数列求和.【名师点睛】本题考查数列的表示以及数列求和,属中档题;数列求和问题是高考常考内容之一,数列求和的主要方法有:1.公式法;2.分组求和法;3.倒序相加法;4.错位相减法;5.裂项相消法.其中错位相减法与裂项相消法是考试的重点内容,本题主要采用的是分组求和法.12若函数的导函数在区间上有零点,则在下列区间上单调递增的是( )A B C D【答案】D【解析】试题分析:函数的导函数在区间上有零点,由得,所以,且函数的单调递增区间为,所以函数在区间上单调递增,故选D.【考点】1.导数与函数的单调性;2.函数与方程【名师点睛】本题考查导数与函数的单调性、函数与方程,属中档题;导数与函数的单调性是高考的必考内容,也是难点,导数与单调性关系:单调递增,单调递减;反之,当在某个区间上单调递增,当在某个区间上单调递减.二、填空题13已知,为的导函数,则 .【答案】【解析】试题分析:因为,所以.【考点】导数的运算.14若满足约束条件,则的最大值为 .【答案】【解析】试题分析:在坐标系内作出可行域如下图所示的三角形区域,由图可知,目标函数取得最大值时的最优解为,此时.【考点】线性规划.15抛物线的焦点为,其准线与双曲线相交于两点,若为等边三角形,则 .【答案】【解析】试题分析:抛物线的焦点为,准线方程为,与双曲线的交点为,又若为等边三角形,所以,解之得:.【考点】1.抛物线的标准方程与几何性质;2.双曲线的标准方程与几何性质.【名师点睛】本题考查抛物线的标准方程与几何性质与双曲线的标准方程与几何性质,属中档题;高考对圆锥曲线的考查主要是考查定义、标准方程、几何性质,小题和大题中均有.本题主要考查双曲线与抛物线的对称性的应用.16若定义在区间上的函数满足:对,使得恒成立,则称函数在区间上有界,则下列函数中有界的是 .;,其中.【答案】【解析】试题分析:因为,所以为有界函数;,无上界,所以不是有界函数;的值域为,是无界函数;,因为,所以,即,所以是有界函数;对于,函数 为实数上连续函数,所以在区间上一定有最大值和最小值,所以是有界函数,故应填.【考点】1.新定义问题;2.值域及求法.【名师点睛】本题主要考查新定义问题、值域及求法.函数值域的求解是难点,主要方法有:配方法、单调性法、数形结合法、换元法、基本不等式法、导数法、利用已知函数的有界性法等方法.三、解答题17已知函数在处取最小值.(1)求的值;(2)在中,分别为内角的对边,已知,求角.【答案】(1);(2)或【解析】试题分析:(1)利用三角恒等变换公式化简函数解析式得,由在处取最小值及查求得;(2)由可得,再由正弦定理求出,从而求出角的值,即可求角.试题解析:(1)因为函数在处取最小值,所以,由诱导公式知,因为,所以.所以.(2)因为,所以,因为角为的内角,所以.又因为,所以由正弦定理,得,也就是,因为,所以或.当时,;当时,.【考点】1.三角恒等变换;2.正弦定理;3.三角函数的图象与性质.【名师点睛】本题考查三角恒等变换、正弦定理、三角函数的图象与性质,属中档题.在解有关三角形的题目时,要有意识地考虑用哪个定理更适合,或是两个定理都要用,要抓住能够利用某个定理的信息一般地,如果式子中含有角的余弦或边的二次式,要考虑用余弦定理;如果式子中含有角的正弦或边的一次式,则考虑用正弦定理;以上特征都不明显时,则要考虑两个定理都有可能用到.18如图,在四棱锥中,平面,.(1)求点到平面的距离;(2)点为线段上一点(含端点),设直线与平面所成角为,求的取值范围.【答案】(1);(2)【解析】试题分析:(1) 要求点到平面的距离,只要能过点作出平面的垂线即可,由题意可知平面,所以平面内的任意一条直线,因此只要在平面内过点作即可得到平面,求出的长即可;(2)由(1)可知点到平面的距离即点到平面的距离,所以,即只要求出的取值范围即可.试题解析:(1)过点作,由平面平面可知,即点到面的距离,在正中,即点到平面的距离为.(2),所以点到平面的距离即点到平面的距离,而,所以.【考点】1.线面垂直的判定与性质;2.直线与平面所成的角.【名师点睛】本题考查线面垂直的判定与性质、直线与平面所成的角,属中档题;文科立体几何解答题主要考查线面位置关系的证明及几何体体积的计算,空间中线面位置关系的证明主要包括线线、线面、面面三者的平行与垂直关系,其中推理论证的关键是结合空间想象能力进行推理,要防止步骤不完整或考虑不全致推理片面,该类题目难度不大,以中档题为主.19某校对高一年级学生寒假参加社区服务的次数进行了统计,随机抽取了名学生作为样本,得到这名学生参加社区服务的次数,根据此数据作出了频率分布统计表和频率分布直方图如下:(1)求表中的值和频率分布直方图中的值,并根据频率分布直方图估计该校高一学生寒假参加社区服务次数的中位数;(2)如果用分层抽样的方法从样本服务次数在和的人中共抽取6人,再从这6人中选2人,求2人服务次数都在的概率.【答案】(1),,中位数为;(2)【解析】试题分析:(1)由第一组内频数为,频率为可求出总人数为,由此可求出第二组的频率为,并可求频率直方图中,由频率之和为可求出,频率分布直方图求出面积的一半处求出中位数即可;(2)分分层抽样的原则先求出共抽取人时在和的人数,再列出所有基本事件,可求2人服务次数都在的概率.试题解析:(1)因,所以,所以,.中位数位于区间,设中位数为,则,所以,所以学生参加社区服务区次数的中位数为17次.(2)由题意知样本服务次数在有20人,样本服务次数在有4人,如果用分层抽样的方法从样本服务次数在和的人中共抽取6人,则抽取的服务次数在和的人数分别为:和.记服务次数在为,在的为.从已抽取的6人任选两人的所有可能为:共15种,设“2人服务次数都在”为事件,则事件包括共10种,所有.【考点】1.频率分布表;2.频率分布直方图;3.古典概型.20已知椭圆上的左、右顶点分别为,为左焦点,且,又椭圆过点.(1)求椭圆的方程;(2)点和分别在椭圆和圆上(点除外),设直线的斜率分别为,若,证明:三点共线.【答案】(1);(2)见解析【解析】试题分析:(1),由椭圆过点可得,由椭圆中关系求出 的值即可;(2)由(1)知,设,由此可得,又因为,由此可得,同理可得,所以,即可证三点共线.试题解析:(1)由已知可得,又,解得,故所求椭圆的方程为.(2)由(1)知,设,所以,因为在椭圆上,所以,即,所以.又因为,所以.()由已知点在圆上,为圆的直径,所以,所以()由()()可得,因为直线有共同点,所以三点共线. 【考点】1.椭圆的标准方程与几何性质;2.直线与椭圆的位置关系.21已知函数.(1)求函数的单调区间和最小值;(2)若函数在上的最小值为,求的值;(3)若,且对任意恒成立,求的最大值.【答案】(1)的单调递增区间为,单调减区间为,.(2);(3)【解析】试题分析:(1)求导,解不等式与可得函数的单调区间;(2)求函数的导数,分与讨论函数在区间的单调性与最小值,由求之即可;(3)由题意分离参数得对任意恒成立,构造函数,求导,的符号由分子确定,且函数在上单调递增,所以方程在上存在唯一的实根,且,由此可知函数在上递减,在上单调递增,所以,可证结论成立.试题解析:(1)因为,令,即,所以,同理,令,可得,所以的单调递增区间为,单调减区间为.所以.(2),当时,在上单调递增,所以,舍去.当时,在上单调递减,在上单调递增,若,在上单调递增,所以,舍去,若,在上单调递减,在上单调递增,所以,解得.若,在上单调递减,所以,舍去,综上所述,.(3)由题意得:对任意恒成立,即对任意恒成立.令,则,令,则,所以函数在上单调递增,因为方程在上存在唯一的实根,且,当时,即,当时,即.所以函数在上递减,在上单调递增.所以所以,又因为,故整数的最大值为3.【考点】1.导数与函数的单调性、最值;2.函数与不等式.【名师点睛】本题主要考查导数与函数的单调性、最值;函数与不等式,属难题.本题覆盖面广,对考生计算能力要求较高,是一道难题.解答本题,准确求导数是基础,恰当分类讨论是关键,易错点是分类讨论不全面、不彻底、不恰当.本题能较好的考查考生的逻辑思维能力、基本计算能力、分类讨论思想等.22如图,圆周角的平分线与圆交于点,过点的切线与弦的延长线交于点,交于点.(1)求证:;(2)若四点共圆,且,求.【答案】(1)见解析;(2)【解析】试题分析:(1)要证,只要证即可,由弦切角和圆周角关系可得,由角平分线性质得,又同弧上的圆周角相等,所以,即可证得;(2)由四点共圆及(1)得,设,在等腰三角形中,列出方程,解之即可.试题解析: (1)的平分线与圆交于点,.(2)因为四点共圆,所以,由(1)知,所以.设,因为,所以,所以,在等腰三角形中,则,所以.【考点】1.圆的性质;2.等腰三角形性质;3.圆内接四边形性质.23已知直线(为参数),曲线(为参数).(1)设与相交于两点,求;(2)若把曲线上各点的横坐标压缩为原来的倍,纵坐标压缩为原来的倍,得到曲线,设点是曲线上的一个动点,求它到直线的距离的最小值.【答案】(1);(2)【解析】试题分析:(1)将直线与圆的参数方程化为普通方程,求出交点坐标,即可求;(2)先由伸缩与平移变换规律求出曲线的参数方程,交用参数表示点的坐标,用参数表示点到直线的距离,即可求最小值.试题解析:(1)直线的普通方程为,的普通方程为,联立方程组解
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 四川省达州市东辰国际学校2026届英语九上期末综合测试试题含解析
- 综合部年终总结2025
- 西藏日喀则市南木林一中学2026届英语九年级第一学期期末监测模拟试题含解析
- 2026届濮阳市重点中学英语九上期末检测模拟试题含解析
- 2026届辽宁大连甘井子区育文中学化学九年级第一学期期中检测试题含解析
- 2026届江苏省南京市江宁区南京市临江高级中学一模生物试题
- 医师资格考试题库及答案
- 福建省福州福清市2026届化学九年级第一学期期中学业质量监测试题含解析
- 内蒙古自治区鄂尔多斯市东胜区第二中学2026届化学九上期中考试模拟试题含解析
- 2026届辽宁省抚顺市五十中学九年级化学第一学期期末达标检测试题含解析
- 【培训课件】网络安全培训
- 2024秋新沪粤版物理8年级上册教学课件 3.1 光的传播与色散
- 2020高考试题研究(工艺流程高考真题)备考建议及说题比赛课件
- 2025年广西公需科目考试题库及答案
- 数据安全技术应用职业技能竞赛理论考试题库500题(含答案)
- 使用错误评估报告(可用性工程)模版
- 话题阅读(十四):旅游与交通-小学英语阅读理解专项训练
- 教师师德师风的培训
- 11.9消防宣传日关注消防安全主题班会课件
- 中国商飞在线测评题
- 高中英语新课程标准解读课件
评论
0/150
提交评论