




已阅读5页,还剩24页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
数列求和,.,2,一、利用常用求和公式求和,利用下列常用求和公式求和是数列求和的最基本最重要的方法.1、等差数列求和公式:2、等比数列求和公式:3、4、5、,一、公式法,例1已知,求的前n项和,由等比数列求和公式得,.,5,公式法求和的前提是由已知条件能得到此数列是等差或等比数列,因此,要求不仅要牢记公式,还要计算准确无误。,在什么情况下,用公式法求和?,例2,二、分组求和法,.,7,分组求和,解:,求前n项和关键的第一步:,分析通项,在什么情况下,用分组求和?,解:设,将其每一项拆开再重新组合得,(分组),.,10,解:设,分组求和,.,11,三、倒序相加法,如果一个数列an,与首末两项等距离的两项之和等于首末两项之和,可采用把正着写和与倒着写和的两个和式相加,就得到一个常数列的和,这一求和的方法称为倒序相加法.,.,12,把数列中的相邻几项合并,进而求和的方法称为并项求和法.,点评:此题的关键是把相邻两项分别合并、分解因式后,转化为等差数列求和.,四、并项求和法,50,.,13,分析:此数列为特殊数列,其通项的分母是两个因式之积,且两数相差1,若把通项作适当变形为,例2,裂项,五、裂项相消法,.,14,把数列的通项拆成两项之差,即数列的每一项都可按此法拆成两项之差,在求和时一些正负项相互抵消,于是前n项的和变成首尾若干少数项之和,这一求和方法称为裂项相消法.,五、裂项相消法,.,15,技巧小结:常见的裂项变形,.,16,解:,求和,裂项相消,.,17,解:由题意设,.,18,已知,若前n项和为10,则项数n为_.,120,.,19,如果一个数列的各项是由一个等差数列与一个等比数列对应项乘积组成,此时求和可采用错位相减法.,六、错位相减法,.,20,解:设,得,(设计错位),(错位相减),例3.求数列,前n项的和,在什么情况下,用错位相减法求和?,.,23,.,24,七、利用数列的通项求和,先根据数列的结构及特征进行分析,找出数列的通项及其特征,然后再利用数列的通项揭示的规律来求数列的前n项和,是一个重要的方法.,.,25,例求,之和.,解:由于,(找通项及特征),.,26,练习,1.数列的前n项之和为Sn,则Sn的值等于()(A)(B)(C)(D),A,2.练习:求下列数列前n项的和Sn:,.,28,解:由题可知,的通项是等差数列2n1的通项与等比数列的通项之积设(设制错位)得(错位相减)再利用等比数列的求和公式得:,3、求和:,.,29,把数列的通项拆成两项之差,即数列的每一项都可按此法拆成两项之差,在求和时一些正负项相互抵消,于是前n项的和变成首尾若干少数项之和,这一求和方法称为裂项相消法.,1.公式法:,4.错位相减法:,2.分组求和法:,3.裂项相消法:,直接利用等差等比数列的求和公式,有一类数列,既不是等差数列,也不是等比数列,若将这类数列适当拆开,可分为几个等差、等比或常见的数
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025年公安机关人民警察高级执法资格考试试卷及答案
- 课件集合的概念
- OSl-参考模型课件
- 中国植物油抽提溶剂油项目投资计划书
- 儿科小儿哮喘急救指南
- 儿科支气管肺炎护理指南
- 2025年李沧区二模考试题及答案
- 永川急救理论试卷及答案
- 2025年南宁书法考试题目及答案
- 2025年中国农用复合肥项目投资计划书
- 人教新目标八年级英语上册 题型特训 补全对话(含答案)
- 银行招聘考试每日一练 2022.3.26模拟卷(含答案解析)
- 普通化学-水溶液化学
- 22S702 室外排水设施设计与施工-钢筋混凝土化粪池
- 物业管理标准化管理体系员工入职与试用标准作业规程
- 指数函数图像和性质-课件
- 学习弘扬枫桥精神与枫桥经验PPT枫桥经验蕴含的精神和内涵PPT课件(带内容)
- 内科学-中毒总论
- 测量员岗前培训试题
- 架空输电线路施工质量检验及评定规程
- 受控文件清单
评论
0/150
提交评论