说明书.doc

水解塔设计(全套CAD图+说明书+开题报告+翻译)

收藏

资源目录
跳过导航链接。
压缩包内文档预览:(预览前20页/共75页)
预览图 预览图 预览图 预览图 预览图 预览图 预览图 预览图 预览图 预览图 预览图 预览图 预览图 预览图 预览图 预览图 预览图 预览图 预览图 预览图
编号:81834721    类型:共享资源    大小:6.49MB    格式:ZIP    上传时间:2020-05-29 上传人:机****料 IP属地:河南
50
积分
关 键 词:
水解 设计 全套 CAD 说明书 开题 报告 翻译
资源描述:
水解塔设计(全套CAD图+说明书+开题报告+翻译),水解,设计,全套,CAD,说明书,开题,报告,翻译
内容简介:
DD 大 学毕业设计(论文)任务书学 院: 机械工程学院 题 目: 水解塔设计 毕业设计任务书设计内容及要求:一 已知设计参数:操作压力 5.5Mpa(绝)操作温度 255入塔物料 油脂 水 出塔物料 脂肪酸 甜水 密度 750kg/m3塔高 37.5, 塔径 1.2米环境 衡阳室外二 设计内容及设计工作量要求:(1) 按所给设计参数完成水解塔的设计;(2) 绘制设计图纸总计3张零号以上,其中要求手工绘制1张壹号以上;(3) 设计说明书字数不少于1.5万字,并要求统一用A4纸打印;(4) 翻译3千左右汉字量的与毕业设计有关的英文资料;(5) 撰写相当于3百汉字的英文摘要。三 完成日期:2009年1月5日2009年6月5日。四 主要参考文献:化工设备设计全书(塔设备)化工原理 化工工艺设计手册 GB150-1998钢制压力容器 指导教师:年 月 日毕业设计(论文)开题报告设计(论文)题目水解塔设计设计(论文)题目来源自选题目设计(论文)题目类型工程设计类起止时间一、设计(论文)依据及研究意义:1.设计依据:根据老师提供的设计任务书的规定,结合自己所学知识,参照国家标准、行业标准,查阅相关资料,科学合理地完成设计。2.研究意义:随着我国洗涤用品工业、表面活性剂工业、化工助剂工业的发展,油脂水解技术日益重要。脂肪酸行业近年发展较快,据不完全统计,我国目前天然脂肪酸年产量达60余万吨,预计天然脂肪酸产量和需求量将随着各种工业助剂和表面活性剂的开发、推广、应用,还要相应增大,而脂肪酸生产的前提是油脂水解。二、 设计(论文)主要研究的内容、预期目标:(技术方案、路线)1. 研究内容:(1)进行水解塔及其部件的设计方案论证;(2)进行水解塔及其部件的设计总图设计; (3)设计水解塔设备的部件; (4)编写毕业设计说明书;(5)进行毕业设计答辩。2.预期目标:(1)设计水解塔及其部件图纸工作量在3张零号图以上。(2)编写毕业设计说明书,说明书的字数不少于1.5万字.三、 设计(论文)的研究重点及难点:1. 研究的重点:(1) 水解塔的塔形设计及塔板数的计算;(2) 水解塔的具体计算及设计;(3) 其他附件及组件的选择;(4) 图纸的绘制。2. 研究的难点:(1) 系统的设计;(2) 各部件的设计;(3) 图纸的绘制。四、 设计(论文)研究方法及步骤(进度安排):1. 2009.1.52009.3.20 根据任务书给定的相关参数选择水解塔最优的流程方案;2. 2009.3.202009.4.10根据所选方案及给定的参数进行机械设计计算;3. 2009.4.102009.5.10进行水解塔的具体结构分析与设计计算,画出部件及零件的图纸;4. 2009.5.102009.5.30设计浮阀,根据设计得出的参数进行绘图,对人孔、法兰、裙座等部件进行简单分析及选型;5. 2009.5.302009.6.5完成中英文摘要、外文翻译,完善设计说明书。五、 进行设计(论文)所需条件:1. 进行参观实习:通过实地考察,了解水解塔具体的结构和其流程的相关参数,实际运行时应该要考虑的各相关因素;2. 准备相关的文献资料:到图书馆、院资料室、教研室借阅与水解塔相关的资料、图纸等。3. 收集机组各附件的资料信息:从指导老师处获得一些机组附属件的具体厂家的参数资料,同时上网下载水解塔生产厂家的参数资料和学术界相关论文;4. 设计所需场地:学校提供讨论研究以及绘制图纸的设计教室;5. 设计所需设备:计算机(能够进行CAD绘图及上网查阅相关资料)。六、 指导教师意见:签名: 年 月 日摘要:本次设计的是油脂和水生成脂肪酸的水解塔。根据工艺条件选用板式塔来完成此任务。板式塔的设计包括的主要内容:物料衡算、热量衡算、塔设备的工艺设计(塔内径、塔高、封头、填料、进出口接管及裙座等)等。并对其进行强度计算以及校核,绘制图纸等。技术方案及路线:首先进行物料衡算和热量衡算,然后进行塔设备的尺寸计算,主要包括塔的高度确定和板层高度的计算,以及对塔附件(吊柱、液体分布器、人孔、封头、裙座等)的计算与选择,最后进行强度计算和校核。关键词: 油脂水解;水解塔;物料衡算;强度计算Abstract:What this design is the fat and aquatic becomes the fatty acid the hydrolisis tower. Selects the plate tower according to the technological conditions to complete this task. The plate tower design includes primary coverage: The material balance, the thermal graduated arm calculated that the tower equipments technological design (tower inside diameter, tower are high, shell cover, padding, import and export control and skirt and so on) and so on. And carries on the strength calculation as well as the examination to it, the plan blueprint and so on. Technical program and route: First carries on the material balance and the thermal graduated arm calculated that then carries on the tower equipments size computation, mainly includes the tower the high determination and the flag high computation, as well as to tower appendix (pylon, liquid spreader, person hole, shell cover, skirt and so on) the computation and the choice, carry on the strength calculation and the examination finally.Key word :Fat hydrolisis; Hydrolisis tower; Material balance; Strength calculation;前 言随着我国洗涤用品工业、表面活性剂工业、化工助剂工业的发展,油脂水解技术日益重要。本设计是在水解塔中将油脂生成脂肪酸的塔设备的设计。水解塔属于板式塔。从2013年1月份开始着手设计任务以来,本人从图书馆及网上资源查阅了大量的相关资料,对本设备的基本原理有了更进一步的了解,在和同组同学讨论以及任务分工后进行了总体方案论证、总图设计、主要部件设计和设计任务书的编写工作。本次设计是对我们四年来所学的专业知识的总结,旨在培养我们综合运用所学的基础知识、专业知识去分析和解决生产实际问题的能力及培养正确的设计思想,并通过运用设计标准、规范、手册、图册、和查阅有关技术资料去进行理论计算、结构思考、绘制图样、写相关说明性材料,培养我们机械设计的基本技能和工程设计工作者的基本素质,为我们走上工作岗位打下坚实的基础。由于本人水平有限,实践经验不足,再加上时间不允许非常深入的研究,以致设计中难免会出现错误和不当之处,还请各位老师多提宝贵意见,深表感谢!目 录第1章 简述 1 1.1油脂水解方法1 1.2高、中压水解技术的对比2 1.3高压连续水解工艺3 1.4两种中压水解装置技术性能的对比4第2章 钢制塔式容器标准6 2.1准则6 2.2安全系数6 2.3适用范围 6 2.4设计压力与稳定 7 2.5腐蚀裕量8 2.6最小厚度8 2.7结构9第3章 强度、刚度、稳定性的计算12 3.1设计条件12 3.2选材13 3.3塔体和封头的壁厚计算14 3.4塔设备的载荷分析和设计准则14 3.5塔设备质量载荷计算19 3.6自振周期20 3.7地震载荷20 3.8风载荷与风弯矩26 3.9偏心弯矩与最大弯矩30 3.10圆筒轴向应力校核 32 3.11塔设备压力实验时的应力校核 34 3.12裙座轴向应力的校核38 3.13地脚螺栓42 参考文献52英文翻译54谢辞70v英文文献1英文原文Stress Corrosion Cracking of Pressure Vessel Steels in High-Temperature Caustic Aluminate SolutionsSUE LIU, ZIYONG ZHU, HUI GUAN, and WEI KE Stress corrosion cracking (SCC) behavior of three kinds of low alloy pressure vessel steels in high temperature (200 to 300 ) caustic aluminate (AlO2-) solutions has been studied by slow strain rate tests (SSRT). The results indicate that these pressure vessel steels are susceptible to SCC in caustic alnminate solution and that the SCC susceptibility increases with increasing temperature between 200 to 300 Sulfide content and stringered sulfide inclusions severely and anisotropically affect the caustic SCC of these low alloy steels. The inclusions in the rare-earth-treated steel are predominantly globular rare-earth sulfides or oxysulfides, resulting in improved transverse properties. The effect of inclusions on SCC behavior correlates with the projected area of inclusions per unit volume at the crack tip, Av, on the plane perpendicular to the tensile direction. The susceptibility to SCC increases with increasing A v.I. INTRODUCTIONLOW alloy pressure vessel steels are the common structural materials for welded reaction vessels (e.g., digesters, precipitators, and evaporators) in the Bayer process for extraction of alumina from hydrated oxide ores (e.g., bauxite). These low alloy reaction vessels are in contact with high temperature concentrated caustic alnminate solutions and frequently suffer from stress corrosion cracking (SCC) during service. 1,2 Although SCC of steels in simple NaOH solutions has been the subject of numerous studies, f3,41 little work has been done in caustic aluminate solutions at 92 oc.t5,61 To purify alumina from lower quality ores, the extracting temperature has been elevated. However, there are no data on SCC susceptibility of steels used in the alumina industry at higher temperatures. The objective of the present work is to study the SCC behavior of low alloy pressure vessel steels with different sulfur contents in an imitative Bayer process at 200 to 300 Over the past few years, a number of research works 7,8,9 have shown that nonmetallic sulfide inclusions can cause environmentally assisted cracking to occur in high-temperature water related primarily to Boiling Water Reactor (BWR) and Pressurized Water Reactor (PWR) environments. The effect of MnS inclusions on caustic SCC property is also discussed in this article to give recommendations for improving SCC resistance of materials used in the alumina industry.II. EXPERIMENTAL PROCEDUREStudies were conducted on three kinds of low alloy steels: 16MnR, A48CPR, and rare-earth-treated 16MnRE. The pressure vessel quality rolling steel plates used in this work were 50-mm thick and were annealed at 650 The chemical compositions and mechanical properties of these steels were similar (Tables I and II), although the sulfur contents were very different. The cylindrical tensile specimens were 24 mm in gage length and 5 mm in diameter with threads at each end to fit tensile grips. Two kinds of tensile test pieces were sectioned from the steel plates parallel (L specimen) and perpendicular (T specimen) to the rolling direction to investigate specimen orientation effects. All specimens were polished with a 1000 grit emery paper and then cleaned with alcohol and acetone before testing. The test environment imitated the industrial Bayer process, and the temperature was varied from 200 to 300 The initial molal (M) concentration (Table III) in imitative Bayer solutions (IBS) was 7.42M NaOH, 1.32M A1203 3H20, and some impurities: carbonate, sulfate, and chloride. The test solution was prepared from distilled water and analytical grade chemicals. The resulting concentrations of anions are based on stoichiometric formation of aluminate species (AlOe-) according to Eq. 1:The slow strain rate tests were performed on an SERT-5000DP-9L machine in a static autoclave at an initial strain rate of 3.3*10-6/s. To protect the autoclave from caustic solution, a loose-fitting nickel liner, which held the corrosive media, was placed within it. A small amount of water was injected into the crevice between the autoclave and the liner to improve heat transfer and to prevent the formation of a concentrated caustic solution in this crevice. After sealing, the system was overpressured with 2.0 MPa nitrogen to prevent boiling and to minimize the transfer of corrosive media to the crevice. At the start of each test, specimens were initially loaded to 50 MPa and then strained to fracture. The tensile specimens were at the natural corrosion potential during straining. The results obtained in IBS were compared with those in an inert environment of 2.0 MPa nitrogen. The time to failure (TTF), the percent reduction of crosssectional area (pet ROA), and the elongation (E) were the main parameters used to evaluate SCC susceptibility. One-half of the specimen was mounted with epoxy resin, ground, and given a final metallographic polish to observe the secondary cracks along the gage length by optical microscopy.Table I. Analyses of Composition (Weight Percent)SteelsCSiMnPSAlCuMoNiRE16MnR0.160.471.530.0140.018-0.055-A48CPR0.1750.341.350.0120.006-0.0450.058-16MnRE0.160.401.380.0180.009-0.020Table II. Mechanical Properties of SteelsSteelsUltimateStrengt( MPA )YieldStrength( MPA ) Elongation (Pct)Impact Strength(J/cm , by Charpy Test)25260L SpecimenT SpecimenL SpecimenT Specimen16MnR530.0350.032.0159172777597142169858176A48CPR528.9316.131.620924018723329831723125827216MnRE535.0338.032.5169172172156129122Table III. Composition of IBS (M)NaOHAl2O33H2ONa2CO3Na2SO4NaCl7.421.320.30.140.14Ill. RESULTSA. The Effect of Temperature on Caustic SCC Behavior Figure 1 shows the effect of temperature on SCC behavior for L specimens of 16MnR steel in IBS at 260 The pct ROA is reduced by the corrosive solution as compared with that in nitrogen. Also the TTF, pct ROA, and E of specimens in IBS decrease with increasing test temperature. The results indicate that 16MnR steel is susceptible to SCC in IBS and that the susceptibility increases with an increase in temperature from 200 to 300 B. Comparison of SCC Susceptibility between 16MnR, A48CPR, and 16MnRE SteelsThe pet ROA data of L specimens for both steels shown in Figure 2 are the average values of duplicate specimens in each test condition, and the results can be reproduced as follows. For A48CPR steel, the pct ROA data are 66.0 and 64.2 at 260 and 63.6 and 61.1 at 280 For 16MnR steel, the pct ROA data (as shown in Figure 1) are 57.2and 55.0 at 260 and 49.6 and 47.0 at 280 The results (Figure 2) of L specimens for both steels indicate that A48CPR steel is also susceptible to SCC under the test conditions and that the susceptibility may increase slightly with increasing temperature from 260 to 280 The L specimens of 16MnR steel are inferior to those of A48CPR steel.The effects of specimen orientation on SCC behavior ar shown in Figure 3. The T specimens of 16MnR steel ar obviously more susceptible to SCC than its L specimensHowever, the SCC behavior for A48CPR steel of T specmens is similar to the L specimens. The SCC resistanc for the T specimen of rare-earth-treated steel 16MnRE improved, and the extent of anisotropy of 16MnRE decreases as compared with 16MnR. The large number of cracks observed on an L specimen of 16MnR steel after testing in IBS at 280 is shown in Figure 4. The cracking path of a typical specimen is shown in Figure 5. The cracks predominantly propagated in intergranular path, but there are also some transgranular cracks.IV. DISCUSSION Caustic SCC of low alloy pressure vessel steels in IBS at elevated temperatures is predominately intergranular (Figure 5) as at 92 The SCC susceptibility increases at high temperatures between 200 and 300 (Figures1 and 2). In comparison to the conventional (25 Pourbaix diagram, the most noticeable change at higher temperature diagrams is the larger area of stability for the HFeOi ion. An association between caustic cracking and the formation of HFeO2 ion has been previously suggested, vq Simultaneously, the reaction rate of the anodic and cathodic reactions increases at the elevated temperature. The orientation effect on SCC behavior (Figure 3) is considered to be related to inclusions in the steels. The volume fraction, shape, and distribution of manganese sulfide inclusions in 16MnR and A48CPR steels are very different,as shown in Figures 6(a) and (b). The volume fraction ofinclusions in 16MnR steel is greater than in A48CPR steel because the sulfur content is higher. The inclusions in A48CPR steel are globular and well distributed, whereas those in 16MnR steel are predominantly elongated and in bands parallel to the rolling direction. The SCC process is the brittle or quasibrittle fracture of a material under the conjoint actions of stress and corrosive environments. The detrimental effects of nonmetallic inclusions on the mechanical properties of steels are now well established, tg Considering the mechanical fracture aspect during the SCC process, the effect of inclusion on SCC behavior correlates with the total projected area, Aw, of inclusions per unit volume at the crack tip on the plane perpendicular to the tensile direction, i. The crack propagation rate is accelerated by cracking in or around the inclusions near the crack tip and is more severe with increasing A w. If the shape of inclusion is assumed to be triaxial ellipsoids (Figure 7), it is possible to calculate the magnitude of A vi in the following equation: Avi=6Vv/(di) 2where Vv is the volume fraction of inclusion and di is the average dimensions of inclusion in the tensile direction, i.There are more inclusions in 16MnR steel than in A48CPR steel. The value of Vv for 16MnR steel is therefore larger. But the average dimension of the elongated inclusions on the longitudinal section, for L specimens of 16MnR steel is also larger. However, the value of Aw on the plane perpendicular to the tensile direction, for the L specimen, is similar for both steels. So the difference in SCC susceptibility of L specimens between 16MnR and A48CPR steels is slight (Figure 2). The results indicate that the amount and shape of inclusion have no significant effect on the SCC behavior for L specimens. However, the shape and distribution of inclusion in steels severely affect the transverse properties such as the impact strength of Charpy tests (Table II) and SCC susceptibility (Figure 3). Even though a steel contains the same amount of inclusion, in a given steel, the volume fracture of inclusion should be the same, but the inclusion length dimension di and A w on the different fracture plane may be different according to the shape of inclusion. Because inclusions in 16MnR steel are stringered bands parallel to the rolling direction, the average length dimension of inclusions in the longitudinal direction, is much larger than that in the transverse direction, d2, and the average projected area on the transverse plane for the longitudinal specimen, Aw, is correspondingly smaller than that on the longitudinal plane for the transverse specimen, A v2. The elongated inclusionsin the 16MnR steel cause anisotropy in its SCC resistance(Figure 3). In comparison with the 16MnR steel, the value of Art is equal to that of At2 for globular inclusions in the A48CPR steel, so the SCC behavior is isotropic. On the other hand, SCC is also an electrochemical process. The pre-existing active-path theories tl31 have been applied primarily to intergranular cracking of ductile alloys in aqueous environments and relate the propagation process to the preferential dissolution of chemically active regions in the grain boundaries. The recent investigations indicate that the MnS inclusions dissolve readily in high-temperature water, presumably forming HS- and H2S. These species strongly affect the crack growth rate during SCC or corrosion fatigue processesYl In areas containing a dense distribution of elongated MnS inclusions, the crack tip can propagate much faster than in the surrounding area. So inclusions in steels have an influence on SCC behavior. The results of rare-earth-treated steel 16MnRE under the same test conditions further confirmed the inclusion effect. The inclusions in 16MnRE steels are predominately globular rare-earth sulfides or oxysulfides (Figure 6(c) which are hard particles and difficult to be deformed and elon- gated. The SCC results shown in Figures 3 and 8 indicate that the ratio of pct ROA for T specimens, ROA(T), to that for L specimens, ROA(L), increases in comparison with that for 16MnR steel. The transverse SCC resistance obviously improves with inclusion shape, controlled by adding rare-earth elements in the low alloy steel 16MnR. But there are still a few stringered inclusions (Figure 6(c) in 16MnRE, so the transverse SCC resistance of 16MnRE is not as good as that of A48CPR. Nevertheless, it is hoped that 16MnRE steel can have the same SCC resistance as that of A48CPR used in the alumina industry by controlling the amount of rare-earth elements added and the rolling process.V. CONCLUSIONS 1. Both 16MnR and A48CPR steels exhibit caustic SCC susceptibility in the IBS. The SCC susceptibility of 16MnR steel increases with increasing temperature from 200 to 3002. The volume fraction, shape, and distribution of inclusions in steels affect the caustic SCC of low alloy pressure vessel steels, especially in steels with stringered sulfide inclusions where the transverse SCC resistance is severely reduced. Adding rare-earth elements to the steel improves transverse SCC resistance by controlling the shape and dis tribution of inclusions. 3. The effects of inclusion on SCC behavior correlate with the projected area of inclusions at the crack tip, Av, on the plane perpendicular to the tensile direction. The SCC susceptibility increases with A v.ACKNOWLEDGMENTS This work was supported by the National Natural Science Foundation of China (Contract No. 59271049) and the State Key Laboratory of Corrosion and Protection, Academia Sinica.REFERENCES1. Caustic Stress Corrosion Symposium, Alcan Jamaica Company (Aljam), Mandeville, Jamaica, Mar. 1982. 2. V.I. Artemev, V.I. Seregin, E.P. Zholoboya, and V.P. Belyaev: Zashch. Met., 1979, vol. 15, p. 62-65. 3. M.F. Maday, A. Mignone, and A. Borello: Corrosion, 1989, vol. 45, pp. 273-82. 4. D. Singbeil and D. Tromans: Metall. Trans. A, 1982, vol. 13A, pp. 1091-98. 5. Huy Ha Le and Edward Ghali: Corros. Sci., 1990, vol. 30, pp. 117- 34. 6. R. Sriram and D. Tromans: Corrosion, 1985, vol. 41, pp. 381-85. 7. F.P. Ford: Proc. 2nd Int. Atomic Energy Agency Specialists Meeting on Subcritical Crack Growth, Sendai, Japan, May 15-17, 1985, W.H. Cullen, ed., NUREG CP-0067, vol. 2, pp. 3-72. 8. H. Hanninen, K. Torronen, M. Kemppainen, and S. Salonen: Corros. Sci., 1983, vol. 23 (6), pp. 663-79. 9. J.H. Bulloch: Proc. 3rd lnt. Symp. on Environmental Degradation of Materials in Nuclear Power Systems-Water Reactors, TMS, Warrendale, PA, 1988, pp. 261-68. 10. H.E. Townsend: Corros. Sci., 1970, vol. 10, pp. 343-58. 11. M.J. Humphries and R.N. Parkins: Syrup. Fundamental Aspects of Stress-Corrosion Cracking, The Ohio State University, Columbus, OH, Sept. 11 15, 1967, R.W. Stache, A.J. Forty, and D. Van Rooyen, eds., NACE, Houston, TX, 1969, pp. 384-95. 12. W.A. Spitzig: Metall. Trans. A, 1984, vol. 15A, pp. 1259-64. 13. Shinobu Matsushima, Yasuyuki Katada, Shunji Sato, and Norio Nagata: Corrosion Control, Proc. 7th Asian-Pacific Corrosion Control Conf., International Academic Publisher, Beijing, 1991, pp. 112-172译文钢制压力容器在高温腐蚀性铝酸溶液中的应力腐蚀裂纹研究 刘舒 朱自勇 关慧 魏柯通过慢应变速率(SSRT)的测试,对三种低合金压力容器用钢在高温( 200 -300)腐蚀性铝酸(AlO2-)溶液中的应力腐蚀开裂(SCC)情况进行了研究。结果表明,这类压力容器钢在该类溶液中SCC较敏感,并随温度升高SCC会加剧。另外,硫化物及其它杂质的混入也会引起钢的腐蚀。稀土处理过的钢中主要含球状的硫化稀土和硫氧化合稀土,这就导致其加大了横向断裂特性,包括在延伸区域应力腐蚀断裂点Av,也就是在垂直与平面的伸长方向,随着Av值的变大,应力腐蚀特性较为明显。一引言低合金钢是比较常见的焊接反应容器的材料(例如沼气池, 除尘器,蒸发器等) ,通过贝尔反应从含氧的水合物中将AlO2-提取出来。这类低合金反应容器与具腐蚀性的高温铝酸溶液接触并立刻出现腐蚀现象。在此期间,钢材在纯NaOH溶液中的应力腐蚀已经有过大量的研究,在92腐蚀性铝酸溶液中也做了小规模的实验。为了将氧化铝从杂质矿石中提取出来,提取时的温度大大高于92。然而,很难预知SCC的敏感性在更高温度下的铝酸盐工业中的情况。目前的主要工作就是研究低合金压力容器用钢与不同硫化物模拟在200 - 300时的贝尔反应情形下的应力腐蚀断裂。在过去的几年里,大量的研究工作表明,能引起非金属硫化物在沸水中对容器的腐蚀,主要与反应器和压水器的环境有关,包括含腐蚀性的MnS的影响,这一点在本文也将提到,并介绍抗SCC材料在铝酸盐工业中的应用。二实验步骤三种低合金钢处理方式的研究:16MnR钢, A48CPR ,稀土处理过的16MnRE 。进行试验的压力容器轧制钢板厚50毫米, 650 退火处理。这类钢材的化学成分和力学性能(表一和表二)较为相似,但硫的含量大不相同。取可伸长的圆柱形样本原长24毫米,直径5毫米,且均带螺纹便于装紧。从钢材的横断面和纵断面方向分别切割,这种张力实验研究样本的向性能力,所有样本用硬度为1000的砂轮抛光并且测试前用酒精和丙酮液清洗。测试环境模仿工业上的贝尔过程,温度持续在200 到 300之间 。初始摩尔(M)浓度(表三)类似贝尔溶液:7.42M的NaOH, 1.32M的Al2O3 3H2O,并含有杂质碳酸盐、硫酸盐、氯化物。待测液由蒸馏水和分析化学药物组成。此化学反应根据反应前后负离子(AlO2-)浓度相等得到公式: 在一个SERT- 5000DP-9L型机器中进行试验,应变速率为3.3 *10-6 /秒。为避免腐蚀性溶液腐蚀反应容器,内置一个装有抗腐蚀介质的密合式镍垫片。将少量的水注入反应容器和垫片之间的缝隙,以提高传热和防止缝隙中形成腐蚀性的浓碱溶液。密封后,该系统充入2.0 MPa氮,以防止沸腾并最大限度地减小缝隙的腐蚀。在每次试验之前,样本先被加压到50MPa,然后将裂缝张紧。受拉样本在被拉时处于自然腐蚀的状态。在IBS情况下获得的结果与在2.0 MPa氮的情况下作比较。其失效期(TTF) ,伸缩率(pct ROA) ,伸长率( E )是用来评价SCC敏感性的主要参数。其中一半的样本加上环氧树脂,并做最后的磨光处理,使其有金属光泽,观察沿断面方向的二次断裂。 表一 分析成分(重量百分比)钢材CSiMnPSAlCuMoNiRE16MnR0.160.471.530.0140.018-0.055-A48CPR0.1750.341.350.0120.006-0.0450.058-16MnRE0.160.401.380.0180.009-0.020表二 钢的力学性能钢材极限强度( MPA )屈服强度( MPA )伸缩率 (Pct)冲击强度(焦耳/厘米2 ,贝尔试验)25260L样本T样本L样本T样本16MnR530.0350.032.0159172777597142169858176A48CPR528.9316.131.620924018723329831723125827216MnRE535.0338.032.5169172172156129122表三. 组成IBS的成分(摩尔)NaOHAl2O33H2ONa2CO3Na2SO4NaCl7.421.320.30.
温馨提示:
1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
2: 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
3.本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
提示  人人文库网所有资源均是用户自行上传分享,仅供网友学习交流,未经上传用户书面授权,请勿作他用。
关于本文
本文标题:水解塔设计(全套CAD图+说明书+开题报告+翻译)
链接地址:https://www.renrendoc.com/p-81834721.html

官方联系方式

2:不支持迅雷下载,请使用浏览器下载   
3:不支持QQ浏览器下载,请用其他浏览器   
4:下载后的文档和图纸-无水印   
5:文档经过压缩,下载后原文更清晰   
关于我们 - 网站声明 - 网站地图 - 资源地图 - 友情链接 - 网站客服 - 联系我们

网站客服QQ:2881952447     

copyright@ 2020-2025  renrendoc.com 人人文库版权所有   联系电话:400-852-1180

备案号:蜀ICP备2022000484号-2       经营许可证: 川B2-20220663       公网安备川公网安备: 51019002004831号

本站为文档C2C交易模式,即用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知人人文库网,我们立即给予删除!