说明书.doc

年产4500吨二硫化碳尾气处理系统及冷凝器设计(全套CAD图+说明书+开题报告+翻译)

收藏

压缩包内文档预览:(预览前20页/共69页)
预览图 预览图 预览图 预览图 预览图 预览图 预览图 预览图 预览图 预览图 预览图 预览图 预览图 预览图 预览图 预览图 预览图 预览图 预览图 预览图
编号:81834900    类型:共享资源    大小:2.22MB    格式:ZIP    上传时间:2020-05-29 上传人:机****料 IP属地:河南
50
积分
关 键 词:
年产 4500 二硫化碳 尾气 处理 系统 冷凝器 设计 全套 CAD 说明书 开题 报告 翻译
资源描述:
年产4500吨二硫化碳尾气处理系统及冷凝器设计(全套CAD图+说明书+开题报告+翻译),年产,4500,二硫化碳,尾气,处理,系统,冷凝器,设计,全套,CAD,说明书,开题,报告,翻译
内容简介:
DD 大 学毕业设计(论文)任务书学 院: 机械工程学院 题 目: 年产4500吨二硫化碳尾气系统及冷凝器设计 设计要求:一、 要求对年产4500吨二硫化碳尾气系统进行简单的工艺设计,并设计一个完整的冷凝器和计量罐,要求进行热力计算,换热器选型、,结构设计,材料选择,强度计算及校核。1尾气组成、压力、温度:尾气中有600kg/h的饱和二硫化碳气和91.33kg/h硫化氢气体,尾气压力为0.13MPa,温度为45。 2 冷凝起尾气出口温度为10,冷却水进口温度为5,出口温度为7,冷却水进口压力为0.42MP。二、 工作内容:1.按所给设计参数完成二硫化碳冷凝器的施工图设计;2. 绘制设计图纸总计3张零号以上,其中要求手工绘图1张壹号以上;3. 设计说明书字数不少于1.5万字,并要求统一用A4纸打印;4.翻译3千左右汉字量的与毕业设计有关的英文资料;5.撰写相当于3百汉字的英文摘要。 指导老师: 年 月 日一、 工作质量要求设计符合最新国家标准及行业标准。设计图样达到工程设计施工图水平。课件要求条理清晰,重点突出。二、 参考文献化工原理、钢制压力容器、钢制管壳式换热器、化工设备零部件等。指导教师 5年月28日指导教师: 年 月 日 毕业设计(论文)题 目 年产4500吨二硫化碳系统冷凝装置设计 学院名称 机械工程学院 指导教师 职 称 班 级 学 号 学生姓名 年 月 日购买后包含有CAD图纸和说明书,咨询Q 197216396摘要本次设计介绍了二硫化碳尾气处理系统的工艺设计。它包括总工艺流程设计,冷凝器的设计及校核,计量罐的设计及校核。冷凝器的设计是本次设计的重点。根据实际情况最终确定选用应用最为广泛的间壁式换热设备为此次所需冷凝器。它的设计步骤为先进行传热计算,然后进行冷凝器的尺寸计算,最后进行强度计算和校核。设计前的热力计算是本次设计的难点与重点。由于冷凝的介质中含有不凝性气体,所以加大了热力学传热计算这部分的计算难度。冷凝器的设计包括冷凝器上的筒体、封头、管箱、管板、换热管、折流板、拉杆、接管、开孔补强、支座、法兰等的设计、计算与核算。 计量罐的设计包括筒体、封头、接管、开口补强、液面计及支座的设计和校核,是本次设计的一个重要组成部分。关键词:总工艺流程;冷凝器;计量罐;AbstractIntroduction to the Design of the exhaust gas treatment system of the carbon disulfide Process Design. It includes the total flow structural design, the condenser design and verification, measurement can design and verification. Condenser is designed to be the focus of this design. According to the actual situation to determine the final selection of the most widely used heat exchanger equipment partitions required for the condenser. It is designed to carry out the steps for the first heat transfer calculation, then the size of the condenser, the final calculation and check for strength. Design before the thermal calculation is difficult in this design and focus. As a result of condensation of the medium containing non-condensable gas, it increased the heat transfer calculation of the thermodynamic calculation of the difficulty of this part. Condenser design includes the cylinder, head, control boxes, control panels, heat exchanger, baffle, bar, take over, opening reinforcement, bearing, flange, such as design, computing and accounting. measurement can design includes cylinder, head, take over, opening reinforcement, and the bearing surface of the design and verification, is an important design component.Key words: total flow; condenser; measurement can;目录前 言11二硫化碳尾气处理系统工艺设计21.1国内外二硫化碳生产概况21.2工艺流程设计32冷凝器的设计42.1冷凝器的结构选型42.2热力计算42.2.1设计参数42.2.2热量衡算52.3冷却水量的计算62.4初定冷凝器尺寸62.4.1试选管子72.4.2校核水的流速82.5冷凝器结构设计122.5.1管束分程122.5.2管子排列122.5.3冷凝器管板的结构形式132.5.4管子与管板、管板与壳体的连接142.5.5 冷凝器壳体设计142.5.6 冷凝器封头设计152.5.7折流板设计162.5.8拉杆设计172.5.9进出口管设计172.5.10进出口管法兰设计182.5.11开孔补强192.5.12管箱设计及管箱与壳体接管的位置202.5.13支座设计222.5.14校核冷凝器应力232.5.15管板校核262.5.16 水压试验校核402.5.17压力试验403 计量罐的设计413.1筒体设计413.2封头设计423.3开孔与接管及补强圈设计433.4液面设计433.5裕量校核443.6支座设计443.7水压试验45附 录46参考文献63谢 辞64第65页 共64页 前 言使热量冲热流体传递到冷流体的设备称为换热设备。它是化工、炼油、动力、食品、轻工、原子能、制药、机械及其他许多工业部门广泛使用的一种通用设备。在化工厂中,换热设备的投资约占投资总量的1020;在炼油厂中,约占总投资的3540。在工业生产中,换热设备的主要作用是使热量由温度较高的流体传递给温度较低的流体,使流体温度达到工艺过程规定的指标,以满着工艺过程上的需要。此外换热设备也是回收余热、沸腾特别是低位能的有效装置。换热设备有多种多样的形式,换热器选型时,考虑的因素很多,主要是流体的性质;压力、温度及应许压力降的范围;对清洗、维修的要求;材料价格;使用寿命等。管壳式换热器具有可靠性高、适用性广等优点,在各工业领域中的到最为广泛的应用。近年来受到其他新型换热器的挑战,但反过来也促进了其自身的发展。在换热器向高参数、大型化的今天,管壳式换热器仍占主导地位。这里介绍一种间壁式换热器的设计计算,它是利用间壁(固体壁面)将进行热交换的冷热两种流体隔开,互不接触,热量由热流体通过间壁传递给冷流体的换热器。这里用水作冷却介质,用于冷却混合蒸汽的温度,从而达到冷凝的效果。间壁式换热器是工业生产中应用最为广泛的换热器。在二硫化碳的生产工艺中,它是溶解二硫化碳气体净化生产装置中的冷凝冷却设备,主要是使混合气体中的二硫化碳冷凝而使有毒的硫化氢排出而处理掉。 冷却机理:在冷凝器中,如果冷凝传热管表面温度低于混合气体的露点,则混合气体中的蒸汽(可凝性蒸汽为二硫化碳蒸汽,不凝性气体为硫化氢气体)冷凝,管表面被湿润,这个表面被气体界膜包围,混合气体中的蒸汽通过这个气体界膜扩散到管表面上冷凝。1二硫化碳尾气处理系统工艺设计1.1国内外二硫化碳生产概况二硫化碳是一种重要的无机化工原料,广泛应用于树脂、燃料、医药、农药、防腐剂、多种溶剂及橡胶等多种产品的生产。由于二硫化碳用途广泛,所以国内外的需求量也比较大,仅我国国内粘胶纤维、选矿药剂、橡胶促进剂、玻璃纸及农药、医药等行业每年需求量近30万吨,特别是粘胶行业扩产速度很快,每年仍需3万吨的二硫化碳投放市场才能满足需要;其次,国际市场发达国家如美国、日本、俄罗斯、法国等因生产二硫化碳环保投入太大,生产成本增加和竞争能力下降等原因,使一部分二硫化碳生产厂关闭,这也造成了国际市场二硫化碳需求有了较大幅度的增加,市场前景十分看好。我国粘胶纤维、橡胶助剂和选矿药剂等生产仍将继续发展,对其的需求也快速增长,目前产品供不应求。预计二硫化碳的生产和需求每年仍会有15%以上的增长速度。 我国现有生产二硫化碳的工厂或车间一百多处,其生产工艺普遍采用古老的电炉法,以木炭和硫磺为原料,流程简图如图1.1冷 凝木 炭除 硫反 应干 燥 硫 磺熔 硫 成品二硫化碳冷 凝精 馏粗二硫化碳图1.1 工艺流程简图这不仅大量消耗森林资源,而且在生产过程中产生有毒气体H2S,工艺古老,生产效率低,不利于环境保护。以天然气代替木炭为原料生产二硫化碳成为目前国内外首选的先进生产路线。以天然气和硫磺为原料生产CS2,国外普遍采用三种技术,即美国的FMC技术、Stauffer技术和PPG技术。此外还有以丙烯为原料的生产技术,但是由于以丙烯为原料不如用天然气优越,很少采用。1.2工艺流程设计 总工艺流程设计如图1.2所示。 图1.2 设计总工艺流程图整套尾气系统的工艺处理过程由四个子系统共同完成。第一部分是CS2、H2S混合气体的冷凝,这部分设备的主要作用是把混合气体中的CS2蒸汽冷凝成液体并收集起来,大部分的CS2蒸汽在这里被冷凝收集。第二部分是活性炭吸附塔对CS2的吸收,这部分设备主要是对从冷凝器接口4排出的H2S气体与未冷凝的CS2蒸汽进行吸收。这里采用两个相同的活性炭填料塔,以备当一个塔里的活性炭吸附饱和后能及时进行更换,保证工作的连续进行。第三部分是H2S与氨水的反应,这部分设备主要是对从吸附塔接口15和20排出的气体进行吸收,采用低浓度氨水与H2S反应。这里同样采用两个相同的反应罐,以便一台反应完毕后及时更替。第四部分是燃烧炉。气体在反应罐内反应完毕后,残余气体进入燃烧炉内燃烧后排出。2冷凝器的设计2.1冷凝器的结构选型 选型应考虑的因素有蒸汽压力,蒸汽组分,冻结与污垢等多种因素。已知方案中初进水的工作温度 t5 出口工作温度t7, 由于两种介质均无腐蚀性,也不易结垢,故可选用固定管板式管壳换热器。这类换热器相比其他类型有很多优点,如:结构简单紧凑,造价低,管程清洗方便等。管程是指介质流经换热管内的通道及与其相贯通的部分,壳程是指介质流经换热管外的通道及与其相贯通部分。因此,可采用工业清水走管程,混合气体走壳程的形式。2.2热力计算2.2.1设计参数 1)尾气组成、压力、温度:尾气中有466.67/h的饱和二硫化碳蒸汽和71.04kg/h硫化氢气体,尾气压力为0.13MPa,温度45。 2)冷凝器尾气出口温度为10,冷却水进口温度为5,出口温度为7,冷却水进口压力为0.42MPa。 3)各项物性参数: H2S的分子量M=34;比热容CP=0.25kcal/kg CS2的分子量M=76;比热容CP=0.24 kcal/kg 汽化潜热r=84 kcal/kg CS2饱和蒸汽压p=-A/T+B;A=1446,B=7.4102.2.2热量衡算设代号如下: P0: 总压力;P1: CS2出口蒸汽压力; P2: CS2进口蒸汽压力; P3: H2S出口蒸汽压力;P4: H2S进口蒸汽压力。 (1) CS2出口压力P1为:(出口温度t=10) log P1=+B ; 其中A=1466, B=7.410, T=273+t. 解得 P1=26.6kPa(2)CS2进口压力 P2为:(进口温度t=45)log P 2=+B ; 其中A=1466, B=7.410, T=273+t. 解得 P2=95.3kPa P3= P0P1=0.103 MPa P4= P0P2=0.045 MPa H2S进口压力为0.045 MPa H2S出口压力为0.103 MPa(3) CS2的出口流量为 G1 根据道尔顿分压定律,压力比等于摩尔数得:G1n1t2 n1 / n2 = p1 / p3 G151.38 kg/h 冷凝量为466.6751.38=415.29 kg/h(4)混合气体的入口焓为i其中t由4510 r=84kcal=84kJ =1.059 =1.005i=G CP+G =(71.041+466.675)(45-10)+466.67 =183172.132 (5)混合气体的出口焓为i 其中t由57 r=84kcal=84kJ =1.059 =1.005i=G CP+G =(71.041+51.385)(75)+51.38 =18323.644热量Q=183172.13218323.644=164848.488= 45.7910W2.3冷却水量的计算已知:冷却水进口温度 出口温度 故 特性温度ts=6C查在此温度下,水的比热容为CP4199J/(kgK)根据传热公式:可得冷却水的量 =45.791034199(7-5) =5.453 2.4初定冷凝器尺寸根据经验值可以先估算管壳式换热器的总传热系数为200W/m2K(采用逆流)如图2.1图2.1逆流温差图其中平均温度差为:tm (T1t2)(T2t1)/(T1t2)/(T2t1) (45-7)-(10-5)/ (45-7)/(10-5) 16.26传热面积A估=PK*tm=4579120016.26=14.082.4.1试选管子采用水走管程,蒸汽走壳程。初步选取管程中的水的流速为0.8m/s,取管径规格为:252.5 mm 则 内径d120mm初选单管程,估算管子数如下:初选换热管管长为2.5m,根据单管的传热面积可计算管子数目为:n=5.453999.83.1440.0220.8=21.8所以取整为22根。则L=14.083.140.02522=8.15 (过长,不符和长径比值 )因此选用四管程 ,采用88根管子。即L=14.083.140.02522=2.03m 根据标准,取2.5米。采用正三角形排列形式: 管心距t=1.25d0=1.2525=32mm 内径D=1.05t=1.05321200.7=439.7mm根据标准,内径取450mm。2.4.2校核水的流速根据雷诺数的因素,同时初设换热器为四管程,同时设4根拉杆,且布管的原因,则布92个孔,88为换热管管孔。则:单管程管束:n116/422查资料特性温度t=(57)/2=6下的物理参数:比热容CP4.199103 J/kgK ; 密度=999.8 kg/m3 黏度=1.49810-3 PaS ; 热导率0.565 W/mK因在冷凝器中发生有相变的传热,为避免管内气液两相流,所以设计蒸气管外冷凝,即冷凝水走管程,混合蒸气走壳程。 则管内水的流速 =5.4530.02222999.84=0.79 2.4.3校核总传热系数 (1)管程对流传热系数1u10.79m/s普兰特常数:管内是混合流体被加热,根据化工原理得公式:(2)壳程对流传热系数2冷凝器中壳程发生有相变的对流传热,所以按下列步骤计算:先计算纯CS蒸汽的传热系数0 有下列公式: =0.725126329.80.16335200088230.02538010-635 =0.725528.6此时特性温度为:t= 黏度380 密度导热系数管子外径=0.025mm温差=4510=35计算含HS的CS混合气体的传热系数:其中含不凝性气体的HS的混合气体的传热系数为 其中C为HS的摩尔分数 为混合气体的运动黏度D为两种气体的相互扩散系数 其中 T=273+27.5=300.5K P=0.13MPa=1.3bar(大气压)原子及其单分子的扩散体积为下列数据:H :2.31 C :15.9 S :22.9下列分子式的分子量为: HS : 34 CS : 76所以 M=47 =2 =47.5=15.9+222.9=61.7则 = =127 = =277.5 = =1.30则运动黏度= =213.54 所以有混合气体的传热系数为: = =210.8(3)总传热系数K取热流体侧污垢热阻Rd11.4 mK/w 取冷流体侧污垢热阻Rd25.8 mK/w 碳钢的导热系数 45 W/(m2K)所以 Rd1混合蒸汽热阻Rd2管子内流体(即冷凝水)的热阻 1管程对流传热系数 壳程对流传热系数b 管璧厚 2.5mm(4)传热面积校核则大约有5的传热面积裕量,而且在设计的时候已经余出0.05的传热系数,所以计算表明所选管子规格、材料、管程数是可用的。2.5冷凝器结构设计2.5.1管束分程由上面设计可知该换热器是四管程,因此管程结构顺序如图2.2所示 图2.2 管程结构图2.5.2管子排列选用正三角形排列,排列形式如图2.3所示图2.3 管子排列图管间距d=32 管子长度L=2.5m.2.5.3冷凝器管板的结构形式根据四管程的排列方式,管板上92个孔,88个换热管孔,4个拉杆孔,黑色部分即拉杆的位置。管板上管孔排列方式如下图:图2.4 管孔排列方式图2.5管板兼法兰结构图管板型号为HG20593-97, 其中20个螺栓孔直径为23mm,螺纹Th M2022.5.4管子与管板、管板与壳体的连接 管子与管板的连接采用机械滚胀法如图2.6图2.6 管子与管板连接图 管板与壳体的连接采用焊接如图2.7图2.7 焊接结构图2.5.5 冷凝器壳体设计根据冷凝器中最大的压力P0.13MPa,则计算压力Pc=1.2P,所以材料选择Q235-A,布管的时候可知设计壳体内径D400mm 查表可知:Q235-A的温差应力:=113MPa. 焊缝采用局部无损探伤计算厚度厚度附加裕量由两部分组成:钢板或钢管厚度的负偏差C1和腐蚀裕度C2,取:CC1+C2=2 mm。壳体厚度不得低于6mm,所以取名义厚度筒体外径D= D+2=400+2412mm 2.5.6 冷凝器封头设计(1)、封头的结构形式是应工艺过程、承载能力、制造技术方面的要求而成型的。本封头采取标准椭圆形封头,材料选择与筒体相同,采用Q235-A,设计压力P=0.13MPa,取封头内径=400mm,由公式得计算厚度为:则设计厚度为:=+ C=0.33+2=2.33mmC腐蚀余量,取C=2mm因焊接因素,所以取封头名义厚度。根据JB/T 4737-95查椭圆形封头标准,可知封头结构如图2.8所示图2.8 封头2.5.7折流板设计设置折流板的目的是为了提高壳程流体的流速,增加湍动程度,并使壳程流体垂直冲刷管束,改善传热,减少结垢。大部分换热器都采用弓形折流板,所以该冷凝器的折流板也采用弓形。在卧式冷凝器中的折流板底部都设有a90,高度为1520mm的缺口,供停车排液时用。材料选择Q235B,因为气体走壳程,因此折流板的缺口左右开。取折流板的名义直径:DDi34003397 mm因折流板的最小间距应不少于1/5筒体内径,且不小于50mm,故取折流板间距B0.35m所以,nB=L/B12.5/0.3517.116.1因此在冷凝器内部安装7块折流板,厚度为12mm折流板是左右缺口,缺口高度h0.20.2m,在此采用弓形的折流板,所以H0.9,而且在底部开缺口,供停车排液之用,其面积要接近接管两倍面积。结构如图2.9所示 图2.9 折流板结构设计图2.5.8拉杆设计本换热器采取拉杆定距杆结构,拉杆直径与数量根据GB151-1999的规定为4根,直径为16mm,拉管在管板的位置见前面的管板图中管孔的排列方式。拉杆与定距管固定,拉管的一端用螺纹拧入管板,每两块折流板之间用定距管固定,每一块拉杆最后一块折流板用螺纹螺母与拉杆固定,如图2.9所示。2.5.9进出口管设计(1)管程进出口管设计:管内流体质量流量G=5.453kg/s 流体密度=999.8设进出口管管内流速均为 (查换热器设计手册)进口管流通面积A=考虑市场材料、规格、价格选用管子规格取。(2)壳程进出管设计:1) 壳程进口: 已知 壳程内走混合蒸汽且混合蒸汽密度=1.30设进口管管内蒸汽流速: 进口管流通面积A=根据计算选择管子规格为:。2) 壳程出口: 由于在冷凝过程中CS 有90%冷凝了,变成了液体,所以出口管道有两个: 未冷凝的蒸汽出口管道设计:(=1.45) 出口管流通面积A=冷凝液即90%的CS液体出口管道设计:(=1262, )出口管流通面积A=管子取:。 2.5.10进出口管法兰设计由于该冷凝器压力不高,故所有的管法兰均根据GB/T9119-2000系列,采用突面板式平焊钢制管法兰。材料为Q235-A,其结构尺寸如表2.1表2.1管子公称直径法兰螺栓dDgDDD2DBf数量直径10810010701441101624M16575014011088591424M1232251007558331424M10尺寸如图2.10图2.10 法兰尺寸图2.5.11开孔补强表2.2管子(mm)公称直径(mm)补强圈尺寸(mm)dDgDDB质量(kg)108100 21010361.1757501305360.48尺寸如图2.11所示 图2.11 管子开孔图2.5.12管箱设计及管箱与壳体接管的位置(1) 确定前、后管箱的结构尺寸及接管位置如下:管箱与封头采用埋弧自动焊,而且为全焊透,里面采用手工焊。焊缝系数为=0.85,其中下图中的接管位置L由下列公式确定(查换热器手册): D为此处开孔补强的补强圈的外径 D=210mm; 为管板的厚度 =48; L取175mm C为修正系数取C (S为壳体壁厚)。 图2.12 换热器箱体(2) 壳体接管位置与尺寸如下图: 图2.13 壳体接管位置与尺寸图其中上图中的、按下列式子计算得:(查换热器手册)1) 取135mm 2) L取90mm 3) L取175mmD为此处开孔补强的补强圈的外径 D=130mm;D为此处开孔补强的补强圈的外径 D=210mm;d 为此处开孔外径 d=25mm;b为为管板的厚度 b=48mm;C为修正系数取C (S为壳体壁厚)。2.5.13支座设计(1)、由于该冷凝器为卧式容器,所以选用鞍式支座 型号为:471292 鞍座BI 450F 该支座必须设计垫板:因为1)该容器圆筒鞍座处的周向应力大于规定值;2)且容器圆筒有热处理要求;3)容器重量较大,地基可能不一定为钢筋混泥土。 图2.14 鞍座(2)、支座尺寸如下表2.3所示 表 2.3 支座尺寸(mm)公称直径DN允许载荷Q/kN鞍座高度h底板腹板筋板螺栓间距llbb400 6118040011088908280垫板鞍座质量kg弧长be500145625 122.5.14校核冷凝器应力(1)换热管与管板连接强度校核表2.4管子壳体材质20号铜Q235A11.210611.2106E/MPa0.211060.21106尺寸mm252.525004002500数量881管间距32mm壳体的璧温约为27.5,所以管子的壁温可估算为:管子进口温度T15,出口温度T27。 假设装配时温度为15,则壳体伸长量管子伸长量:管子与筒体伸缩量之差(管子受拉,壳体受压):壳体截面积:管子截面积:1)筒体上产生的应力由于筒体和管子之间温差所产生的应力由于壳程和管程的压力作用于筒体上的力Q壳程与管程压差产生的力Ps壳程设计压力, Ps=0.3MPaPt管程设计压力,Pt=0.42MPa故=MN2)管子上产生的力 F由于壳体及管程压力作用于管子上的力故3)管子与管板连接的拉脱力Mpaq=4.0MPaa单跟换热管横截面积a=l胀接深度其值为管板厚度减35mm。故l=L-4=48-4=44mm=0.044m因为筒体及管子产生的应力和管子与管板连接的拉脱力都不超过许用应力,该冷凝器不必设置膨胀节。2.5.15管板校核 由图2.42.5延长部分兼作法兰的固定管板图来校核,已知操作温度t1=6 取t=10,优质碳素钢Q235-A的性能E=0.21106MPa,线膨胀系数t=s=11.210mm/mm.初始数据:壳程圆筒: 内径Di =400 mm 厚度s=6 mm(1)壳程圆筒内直径横截面积: A=/4 Di2 =/44002=125600 mm 2圆筒壳壁金属横截面积:As=s(Di+s) =6(400+6)=7649.04mm2 (2)管箱: 取管箱厚度与圆筒厚度相同 h=6mm(3)管子: 管子外径:d=25mm , 管子壁厚:=2.5 mm管子间距: s=32mm , 管子根数:n=88管子金属总截面积:na =n(d-t)t=88(25-2.5) 2.5= 13816 mm 2 管子的有效长度: L=2500mm管束模数:Kt=Ena/LDi (E=0.21106MPa ) =(0.2110613816)/(2500400)=2901.4MPa 管子回转半径: i=1/4d2+(d-2t)21/2 =0.25252+ (25-22.5)21/2=8管子受压失稳的当量长度: 因折流板7块均分,故lcr = 350 mm 系数: Cr=(2Et/st )1/2=3.14 (20.21106/113)1/2=191.4管子的稳定许用应力crlcr /i=350/8=43.756.4有效密封宽度 b=2.53 b01/2=7.59mm8mm对筒体的端部结构DG=D-2b=544-2*8=528mm螺栓载荷:1)预紧状态下需要的最小螺栓载荷:Wa=Fa=3.14DG by=3.14528813=1.7105 (N) 2)操作状态下需要的最小螺栓载荷:Wp=F+Fp=0.785 DG2 P+6.28 DGbmP=0.78552820.22+6.28528820.22=69817.8(N) 螺栓面积: 1) 预紧状态下需要的最小螺栓面积:Aa=Wa/b螺栓材料选用2Cr13,常温螺栓材料的许用应力b =126MPaAa=1.7105/126=1349.2mm22) 操作状态下需要的最小螺栓面积:Ap = Wp/bt=69817.7/111 (查得bt=111 MPa)=628.99 3)需要的螺栓截面积 取Aa与Ap之大值Am=Aa=1349.2mm2 基本法兰力矩:Sa垫片压紧力的力臂为螺栓中心圆直径与DG之差的一半Sa=(D1- DG)/2=(625-528)/2=48.5 Mm=AmSab=1349.210-648.510-3126106=8244.96(N*m) 管程压力作用下的法兰力矩:MP=FDSD+ FTST + FGSGFD作用于法兰内径截面上的流体压力引起的轴向力FD=0.785Di2 P=0.78550020.22=43175(N) FG操作状态下需要的最小垫片压紧力FG=3.14DGby=3.14528813=1.7105(N) FT流体压力引起的总轴向力与作用于法兰内径截面上的流体压力引起的轴向之差FT=F-FD=0.785DG2P-FD=0.78552820.22-43175=4971(N)SG=(D1-DG)/2=(625-528)/2=48.5ST=(SG +SD )/2=(48.5+57.5)/2 =53MP=FDSD+ FTST + FGSG=4317557.5+497153 +1.710548.5=1.1107 Nmm (6)管板 采用管板与换热管机械滚胀接连接,则管板的最小厚度除满足计算要外,还应满足结构设计和制造的要求。材料选用20号钢由结构设计和制造要求: 取管板厚度:=48mm 管子的加强系数:K=1.318Di/(Etna/EpL)1/21/2=1.318500/2518343.88/(0.4190025) 1/21/2=5.1管板刚度削弱系数 =0.4k=K(1-t )=5.1(1-0.814)=0.95 (7)法兰 根据选用甲型平焊法兰(平面密封)法兰外径: Df =615mm 法兰宽度:bf=(Df-Di)/2=(615-500)/2=57.5 管箱法兰厚度 f”=30mm h/ Di=4.5/500=0.009f/ Di=30/500=0.06查图 3-15 得 ”=0.0009旋转刚度 K”=27Mpa确定壳体法兰厚度f=30mm h/ Di=4.5/500=0.009f/ Di=30/500=0.06则同上 =”=0.0009 K=K”=27Mpa旋转刚度无量钢参数=kf/4kt=3.1427/(43591.5)=0.0059 由K=5.1,=0.0059,根据GB151-99图27查出m=0.32m管板第一弯矩系数系数 由K和,根据GB151-99图28查出G=3.2系数M=K=5.1,Q=2.31,根GB151-99图29查出,系数G=0.0013法兰力矩折减系数:管板边缘力矩变化系数;因为所以=0.55法兰力矩的变化系数,=0.55由K=5.1,Q=2.31,根据GB151-99图28(a)查出=2.45(8)壳程压力作用下的危险组合壳程设计压力p=p=0.22Mpa管程压p=0线膨胀系数(1/)换热器材料的线膨胀系数()壳程圆筒材料线膨胀系数()制造环境温度沿长度平均壳程圆筒金属温度沿长度平均的换热管金属温度y换热管与壳程圆筒的热膨胀的变形差管板边缘力矩系数,对于延长部分兼作法兰的管板 即是法兰力矩系数:管板径向应力系数管板布管区周边外径向应力系数管板布管区周边剪切应力系数在壳程压力作用工况下的壳体法兰力矩系数壳体法兰的应力Mpa管板布管区周边剪切应力Mpa壳体法兰应力Mpa管子应力Mpa壳程圆筒轴向应力Mpaq拉脱应力 Mpa1)不计膨胀差=0Et=0 =+0.550.0059=0.0034=8.80.0034=0.03因=max(G1e,G1i)其中=3m/K=30.40.34/5.1=0.08m1,K1.3,G1i=3m/K+2.1/K2=1.45故 =0.280.25=0.820.3-0.530.0062=0.26管板应力: =30.8=4.8壳体法兰应力:K=Df/Di=615/500=1.28 由GB150-99表31(a)查得Y=8.01=125MPaMpa管子应力:壳程圆筒轴向应力:=拉脱应力:(焊接)2)计入膨胀差 t=s=17.0610-6 tt=(115-40)/(ln115/40)=77.5 t0=25 ts=150Et=0.17(-1.210-3)186103=-37.9MpaMpa=0.0065+0.530.0062=-0.0032=8.8(-0.0028)=-0.025因=max(G1e,G1i)其中=3m/K=30.40.22/4.2=0.06K1.3时 G1i =0.28故=0.28=0.83(0.0065)-0.530.0062=0.009管板应力:=59Mp=-36Mpa壳体法兰的应力:=222.8Mpa3=411Mpa管子应力: 壳程圆筒的轴向应力:拉脱应力: (9)管程压力作用下的危险组合:壳程压力:=0管程设计压力1)不计膨胀差:Et=0=8.8 0.2=1.76因=max(G1e,G1i)其中=3m/K=30.41.66/4.2=0.48m1,K1.3,G1i=3m/K+2.1/K2=1.3故 =1.3=0.870.2-0.0062=0.017管板应力: = =13.7Mpa 壳体法兰的应力: = 5.7Mpa管子应力: 壳程圆筒的轴向应力:=1.1Mpa2)计入膨胀差 =-38Mpa=0.0026=8.8(0.0055)=0.048因=max(G1e,G1i)其中=3m/K=30.40.22/4.2=0.063由图GB151-99图31(a)查得 所以56= 0.87(-0.0055)-0.0062=0.0014管板应力:= =111.4(10)壳体法兰的应力:=35.7MPa管子应力: 壳程圆筒的轴向应力:=82.2拉脱应力:2.5.16 水压试验校核进行水压试验目的是检验在超工作压力下的宏观强度,包括检查材料的缺陷、容器各部分的变形、焊接接管的强度和容器法兰连接的泄漏检查等。为了防止氯离子的腐蚀,试压用水应当控制。避免发生低温脆性破坏,对于Q235A钢制压力容器,试压液体温度不得低于5。壳体材料为Q235A,查表得 常温下水压试验压力PT规定为: 或试压值要两者取大值PT0.4MPa校核:筒体壁内应力封头壁内应力PT试验压力 Mpa P 设计内压 MpaDi筒体内径 mm te 筒体璧厚 mm焊缝系数(局部无损检测):0.852.5.17压力试验由GB 150-98 得压力试验必须用两个量程相同的并经过校核的压力表。压力表的量程在试验压力的2倍左右为宜。但不应低于1.5倍和高于4倍的试验压力。容器的开孔补强圈应在压力试验以前通入0.4-0.5 MPa的压缩空气检查焊接接头质量。液压试验试验液体一般采用水。需要时也可采用不会导致发生危险的其他液体。实验液体的温度应低于其闪点或沸点。奥氏体不锈钢制容器用水进行液压试验后应将水渍清除下来,但无法达到这一要求时应控制水的氯离子含量不超过25 mg/L。试验压力 Pt=1.25 P试验时容器顶部应没排气口,充液时应将容器内的空气排空。试验过程中应保 持容器观察面的干燥。试验时压力应缓慢上升,达到规定试验压力后,保压时间一般不少于30 mm。然后将压力降至规定试验压力的80%。并保持足够的时间对所有焊接接头和连接部位进行检查。如有渗漏修补后重新试验。液压试验完毕后,应将液体排尽并用压缩空气将内部吹干。3 计量罐的设计设计一个冷凝器计量罐,要求能够装下一班时间生产的冷凝液,根据一天三班倒,每八小时一班。要求设计压力为0.6MPa, 设计温度为45,实际工作压力为0.45 Mpa,工作温度为1030。3.1筒体设计已知计量罐的入口流量为 温度为10。计量罐每八小时须装下的CS2液为: M= =415.29=3222.32kg3.4吨由于要求有10%的余量,防止过量生产时不会耽误工程。所以 M=4.4110%=3.74吨,在此取3.74吨。则筒体容量至少大于V (常温下)V=初选容器内径为D=1250mm,则筒体长度为LL=2.41m 取2.5m由于容器内所装的液体无腐蚀性,且工作压力也不高。所以采用容器用钢16MnR筒体内径DN=1250mm,L=2500mm,厚度=14mm实际筒体容积为V=筒体质量为m=2.5487=1217.5kg3.2封头设计采用椭圆封头, 材料同样选用容器用钢16MnR, 封头厚度取14mm其尺寸如图3.1所示图3.1 封头其质量m=238kg 容积V=0.398m3.3开孔与接管及补强圈设计表3.1 图3.23.4液面设计采用双玻璃板式液面计, 因为其结构简单,制造方便,通道较大,不易堵塞,比玻璃管液面计安全可靠。型号为玻璃板液面计A PN1.6,L=1260 液面计用阀门与设备相连。如图3.3所示 图3.3 双面玻璃板液面计3.5裕量校核表3.2筒体(12502500)封头(DN1250)H=300mm, h=25mm 鞍座鞍座A 1400F容积m3质量kg 容积m3 质量kg 载荷kN 质量kg3.07 1217.5 0.398 238 160 64计量罐总质量 (kg)计量罐总容积(m3) 计量罐工作中的最大载荷(kN ) 1693.5 3.87 68.3所以 计量罐的容积裕量为 故有38%的裕量。 合格!3.6支座设计根据化工容器及设备简明设计手册卧式容器一般采用鞍式支座,材料为Q235-A,鞍式支座:型号为 鞍座A 1400F和 鞍座A 1400S,本支座的结构尺寸如下图:须注意的是本支座带有垫板且两个的型号不一样,一个采用可以有一点横向位移的S型,这样可以消除由于各种原因造成的横向载荷。 图3.43.7水压试验计量罐材料采用16MnR,查过程设备设计表D1得:,=170MPa,t=170MPa。查过程设备设计表4-3得:试验压力 PT=1.25P=1.250.15=0.19MPa应力校核 =8.5MPa因为 =0.90.85345所以 符合要求 附 录1英文原文Research progress and Application of Evaporative CondenserAbstract:Different condensers are introduced, and their characteristics are compared, the structure, principle and characteristics of evaporative condenser are expounded in particular, Application and research of evaporative condenser are analyzed, problems existing in their application are summarized and accordingly the solutions are proposed. Finally, prospect and the further development of evaporative condense are described.Key words: evaporative condenser, Application, Research progress1 forewordWith the development of industry, energy and water resource in China is very nervous, energy is called water, coal, oil and natural gas outside of the fifth energy, and our various industrial process and equipment involved in the process of cooling energy is very serious, the same phenomenon of condensing load, often several times more than foreign consumption of energy. Industrial production in cooling water, cooling water over 70% direct discharge can cause pollution, waste of resources, the current economic and saving has become one of our basic state policy. Evaporative cooling condenser is one of the key equipments recycling, In addition, the energy crisis and water environment and promoting the evaporation of the research and application of the condenser.2 the condenser2.1 air cooling condenserAir cooling condenser for air-cooled condenser, refrigerant coaste heat of the air away by condensation, refrigerants in pipe. Due to the air convection heat transfer coefficient is low, the coil lateral usually add finned heat air side to increase the area. The condenser is small, condensing heat transfer coefficient of higher temperature, pressure, refrigerator, condensation reduced efficiency. Air cooling condensers biggest advantage is not need water, especially suitable for water supply difficult situations or.2.2 water-cooled condenserAs a coolant, make water high temperature and high pressure gas station equipment, called the condensing cooling condenser. The condensing cooling condenser temperature is low, the air-cooled condenser to the refrigeration capacity and operation efficiency are beneficial in domestic and industrial refrigeration systems have been widely applied. The use of condenser cooling water, can a, also can recycle. Because of the shortage of water resources and water. When using circulating cooling towers, need to have such devices, making the water from the condenser cooling, in order to get cooling cycle repeated use. Common water-cooled condenser are horizontal, vertical tube and shell condenser casing tube and shell condenser and condenser, etc.Air and water cooling 2.3 joint condenser 2.3.1Rain water condenserThrough the cooling water flow to the heat sink in water, the group to form the membrane, water evaporation heat can be taken away, and water to show the way have cooled heat. But because the water film, and not in the air blower with high speed under the influence of water flow and heat transfer of evaporation, poor effect. Because of the pipe to keep large distance between the air clear, therefore the condenser covers an area of big, metal consumption, at present the production and use less.2.3.2 evaporation condenserEvaporation condenser evaporation and condensation and sensible heat is based on the two different temperature, fluid (water and air) released when it is hot, evaporation cooling fluid (water), the cooling effect is part of the liquid into steam by heat released evaporation modal and to realize. Evaporation from condenser water tower and improve the operation principle and its water tower basic same, but relatively YuLiang towers, because it saves cooling water in the condenser, condensing heat transfer stage of air temperature ShiQiuWenDu closer, the condensing cooling water condenser temperature is low 3 5 c, it can greatly reduce power consumption, the circulating compressor reduced dosage, only one third of the tower of cold water.Evaporation from heat exchanger, main condenser circulating water system and the air blower three parts. Heat exchanger is part of a group, serpentine hose in a vertical box at the bottom of the cabinet, for water. Irregular pipe evaporation condenser include: (1) heat coil. General light tube condenser evaporation, but with the heat exchange research, elliptic tubes, drops form, corrugated pipe and alternating surface bellows new efficient coil (a) spiral groove, (b) horizontal grain, (c) pierced trough, (d) distortion. (2) fan. Evaporation condenser have air suction type and combined type two kinds, air suction type fan installed in the box on top of the casing pressure is maintained, water evaporation temperature is low, but be in damp air blower, easy cause corrosion. (3) spray water and nozzle. Spray water of water allocation and evenly on condenser water evaporation of heat transfer effect has very big effect. According to experience, spray water to all wet coil, the water surface to form a continuous film for the best, to gain maximum heat transfer coefficient, and reducing the scale. (4) flush boards. Flush boards will heat and moisture in the air, the water blocking with reduce water loss, blow a flush boards to control the loss of water cycle 0.002% 0.2 per cent for total. Evaporation condenser is will enter the heat coil of high temperature and high pressure steam condensate refrigerants. Coil top cloth water system constantly cooling water spray to the serpentine coil, thin layer surface water film, absorb heat tube refrigerants, not part of the evaporation cooling water evaporation tank on to the next cycle, From the bottom of air flows into the box, fan coil heat will evaporate moisture away in the condenser to the top saturated wet air exhaust form.Evaporative cooling air condenser will be transfer and with mass transfer, water-cooled condenser and the cooling tower is the effective integration of condensing equipment structure. Has the following features: (1) water. It takes advantage of latent heat, water vaporizing water-cooled condenser cooling can take every LKG obviously 25. 12kJ calories, and LKG water in the atmosphere will take about 2428kJ evaporation heat and evaporation condenser water for cooling general theory only 1% of condenser, Considering the splash damage, change the water pollution, the actual consumption factors such as water-cooled about the 5% 10%. Evaporation condenser greatly reduces the consumption of water in China, the northern region of water shortage has important significance, (2). Because of air-cooled condenser condensing ability limited environment temperature, and dry ball evaporative condenser, and ShiQiuWenDu limited environment ShiQiuWenDu general than do the ball low temperature 8-14 degrees Celsius, add to the upper fan equipment due to negative environment, therefore, compared with the air-cooled condenser evaporative condenser temperature, low condensation and condensate temperature rise 1 c, each unit of power consumption will increase capacity, so by 3% 3.5% evaporative condenser power-consumption will significantly reduced. Energy-saving effect is obvious. In HVAC system, relative to other condenser can energy 20% 40%, (3) compact structure. Because of the heat and mass transfer process in two evaporative condenser, and not in time, compared with traditional cooling needs with cooling water condenser, more compact structure, (4) dont pollute the environment. Many plant before using shell and tube type or spray condenser, summer because the pressure was too high condensation, often use venting step-down, but not all the time, which is the non-condensable gas containing plenty of ammonia, according to relevant departments, sometimes up to 90% sample analysis, ammonia loss is quite serious, also cause environmental pollution. But with evaporation condenser after nonexistent this phenomenon. This for advocating environmental protection society has the vital significance. Developed countries evaporation condenser used widely.3 research progressResearch progress of 3.1 abroad abroad the evaporative condenser. In 1952, S.G.C huklin is proposed on the generalized evaporative condenser design method 3. Parker and Trey bal of evaporative cooler of heat and mass transfer detailed experimental 4. Leidenfrost and Korenic Parker in Treybal and is conducted on the basis of the mathematical model, the improvement of their spray water flow experiment is carried out 5. Zalewski of condenser water flowed Gryglaszewski and heat transfer performance of the bundle was studied 6. Alonso put forward a general evaporative cooler of heat and mass transfer model 7.The earliest domestic research progress of 3.2 research evaporative cooling technique began in the 1980s, but because of domestic manufacture and application technology of the significance of energy saving, inadequate understanding, this technology in domestic did not cause enough attention, relevant theoretical and experimental research literature is rare. Since the late 1990s, along with the country and the enterprise to the importance of saving energy and unsaturated evaporative cooling technology research, the increasingly more thorough research content also. In the aspect of theory, such as pipe chang jiang walking process of water evaporation cooling cross reference for research object, WangTieJun reflux type tower mathematical model of the thermal calculation, this paper puts forward a quasi-three dimensional calculation method, Define a series of dimensionless parameter, through the calculation of E - got cross-flow NTU relationship chart, Discuss various parameters on its thermodynamic properties and E - NTU relations.4 application situation and deficiencies4.1 application situationEvaporation condenser in western developed countries have more widely used in domestic applications, due to the actual situation of the northwest region water evaporation condenser, extension and application in the northwest, hotels, office buildings, shopping arcade civil building, and the printing, paint shop, computer rooms and other industrial architecture and fresh-keeping, cold storage, storage architecture of agricultural greenhouse such cooling air conditioning equipment basic using evaporative condenser and beer, food, beverage, pharmaceutical, oil and chemical industry, also more and more USES evaporative condenser, according to some of the companys application data shows, the condensing effect is good, saving energy and water characteristic is obvious.4.2 deficiency and the solving methodsThe application of evaporative condenser is increased, in recent years, domestic and foreign research unceasingly thorough, received the good effect. But the evaporation condenser in use process, there exist some problems, to bring some users economic losses. In the application of evaporative condenser main problems in the course of:(1) the scaling problems. Due to evaporation condenser, compact structure, high thermal heat fast, scaling on heat transfer performance influence is considerable. Many factors influence the scaling, heat transfer surface surface temperature and the surface roughness, surface structure, fluid flow, pH value, the fluid temperature, fluid of impurity ions content and plays a very important role. To solve the current anti-scaling method mainly are: 1) chemical method, namely in circulation water, such as adding inhibitor Na5P3O10, soil 6 NaPO3 (as), organophosphate inhibitor (with carbon bisphosphate, carboxyl acid, organic low molecular weight polymer scale inhibitors (polyacrylic acid or sodium salt, etc.; (2) the physical methods, such as magnetic processing technology, electrostatic processing technology, ultrasonic technology and electronic technology, or surface modification also belong to this one; 3) increase evaporation, some appetizers (condenser pipe heat exchanger in order to reduce wet of wall temperature, slow, using the way of increasing pipe gets cold meats, also can have better effect of anti-scaling. Cooling section is at the top of the general on dehydration and adopts copper chips, in order to improve the curl porosity.when and strengthen heat, but even scaling prevention technology, must also be aware, scale removal, such measures adopted can not only improve the heat transfer efficiency of condenser, still can prolong the service life of condenser evaporation.(2) the corrosion problems. Due to evaporation condenser shell in water and air perennial damp environment, easy to corrosion, if severely corrosive, will not only affect the process of production, but will give the production process to bring huge economic losses, thus solving corrosion problems, prolong the service life of heat exchanger. Corrosion of the main measures are: sacrificial anode method, electroless plating method - P, surface coating material handling, change etc.(3) the reasonable distribution of water. Spray water quantity selection and distribution of evaporative condenser heat effects are significant, spray water unit width of general with cooling water to the domestic and foreign products, inferior product performance compared with foreign products, small volume, and spray evenly, the current domestic enough in this aspect, make water literature should be further reasonable matching theory research. In water distribution system, using large prevent type sprinkler mouth, instead of numerous blowhole, can greatly simplified water distribution system, improve the efficiency and reliable operation, easy maintenance and maintenance costs reduced.(4) fan. Previous domestic evaporation condenser is blowback structure, fan installed below, due to improper setting flush boards, or user improper operation, first, after the pump drive fan fan motor, make water short-circuit boxes to burn. Now, by air suction type, avoid the junction box in case contact with water, and generally does not exist, but the higher requirements for fan blades, ability corrosion.(5) the problem of vibration and noise. Evaporation condenser runtime noise from four aspects: the main water, water pump, fan noise and the comprehensive noise falling. One fan noise. The noise of the fan blades, can choose low noise design width of axial flow fan and increase exhaust muffler. The noise, can be used to drop down noise reduction, the muffler blanket to eliminate noise can be use sound-absorbing material. Due to the tube bundle go high pressure gas, if not firm, fixed by high-pressure air impact, easy to occur, and the larger vibration noise. Therefore, we should pay attention to bundle and cabinet, also can consider the case in the retaining bolt based on channel shock springs to reduce the noise is used.(6) maintenance problems. Evaporation condenser for maintenance requirement is relative taller, the user needs regular maintenance. The algae in the heat accumulation of surface to reduce heat transfer efficiency;, In addition, corps bacteria also is a kind of harmful microbes, send out to the water in the air of respiratory tract and lungs to produce infection. So must be cleaned regularly tank to ensure quality requirements, sundry to prevent algae and corps bacteria.5 development prospectsThe development of evaporative condensers should pay attention to the theory of the first, seek innovation and perfection of the new theory.In tubular evaporation condenser, in order to improve the performance of condensing equipment, except on the structure change of tube type, the research also evaporation condenser manufacturer innovate improve equipment performance of a major way. With the deepening of the research, strengthen the pipe type more and more, in this to distort tube, for example, as a new element, its internal heat distortion of the spiral flow with vertical tube fluid to rotate and secondary flow as the main characteristics of strong disturbance, make the tube temperature gradient in radial flow to produce large mixed, wall temperature gradient, so as to realize the heat transfer enhancement. Visible by strengthening the pipe is currently an important developing direction. Water flows from tube membrane surface, the surface tension of contraction, cannot be observed. In addition, in seawater desalination field, with the same principle of evaporative plate condenser can also unto this kind type, but also can be used for condenser evaporation refrigeration field, its structure is more compact, is more suitable for small and medium-sized commercial air conditioning system, especially the field. In order to improve the heat transfer performance, can use surface heat structure, it can improve the flow condition, strengthen water and air between the heat and mass transfer process, greatly enhances the heat and heat transfer performance, and the heat on the special structure of itself to finish, do not need any additional maintenance. All kinds of heat plate condenser evaporation of signal before condensation coil is used mostly hot-dip zinc to prevent corrosion problems, in recent years, China has some manufacturers of condensing coil used stainless steel materials, basically solved the problem of corrosion, and greatly prolong the life, reduce weighed more than 20%. From the lower production cost, reduce corrosion and reduce the quality into consideration, stainless steel material is evaporative condenser condensing coil a development direction. For the development of Chinese evaporative condenser, should focus on the exploration of the condenser evaporation principle and design ideas, with Chinas national conditions and the introduction of advanced manufacturing technology, this theory can compensate for our shortcomings, make us in a relatively short period of time to achieve higher level of development. In addition, condenser manufacturers, research units and the use of condensing mutual cooperation and common development, design of evaporative condenser is one of evaporative condensing development direction. The condenser play their manufacturer in design and manufacture of evaporative condenser, scientific research units to play their theory and design aspects of their strengths, application of enterprises in the application of strengths, mutual cooperation, mutual cooperation in China, the development and application of evaporative condenser. Because Chinas vast, climatic conditions, and evaporation condenser of condensing effect, the climate conditions should be combined with the specific situation to design and manufacture according to the condenser, or evaporation conditions change throughout the condenser evaporation equipment technical index, evaporation condenser design and manufacture of intelligence. To achieve this goal, we can establish database, using all climate condition, the computer aided design is evaporative condenser design and manufacture of an important developing direction.6 epilogueIn general, our evaporation condenser development and application of relatively lags behind, the application process also exist some problems. But as an energy saving heat exchange equipment, water-saving evaporative condensers with good prospect, especially in recent years, electric power resource and water short on evaporation condenser will promote the research and application of technology of evaporative condenser products and further applications. For those who require precise control of air conditioner system (such as the water source &heat pump air conditioning, frozen and chemical process flow cooling, etc) and operating environments, evaporation condenser easier to meet requirements process control. Engineering application shows that this product to replace the traditional cooling condenser water tower, + general can increase the initial investment in about a year, and economic benefit can be recovered. Because this equipment processing technology, with relatively easy to learn and raising the level of anti-scaling rust technology development, the products will get more extensive application.2中文翻译蒸发式冷凝器的研究现状及其应用摘要:介绍了不同形式的冷凝器,并比较了其特点,重点阐述了蒸发式冷凝器的原理、结构及特点,分析了蒸发式冷凝器的应用及研究状况,总结了其在应用过程中存在的问题与解决方法,并对蒸发式冷凝器的进一步发展做出了展望。关键词:蒸发式冷凝器; 应用; 研究现状1前 言随着工业的发展,我国水资源和能源都非常紧张,节能被称为是水、煤、石油和天然气之外的“第五能源”,而我国各类工业过程和设备中涉及的制冷过程耗能现象十分严重,相同的冷凝负荷,往往比国外多消耗几倍的能量。工业生产中冷却用水占70%以上,冷却用水直接排放会造成热污染、经济和资源浪费,目前节水节能已成为我国的一项基本国策。蒸发式冷凝器就是冷却水重复利用的关键设备之一;另外,能源危机和水环保也促进了蒸发式冷凝器的研究和应用。2冷凝器概况2.1空气冷却式冷凝器空气冷却式冷凝器简称为风冷式冷凝器,制冷剂放出的热量由空气带走,制冷剂在管内冷凝。由于空气的对流传热系数很低,故在盘管外侧通常加肋片以增加空气侧的传热面积。这种冷凝器的传热系数比较小,冷凝温度较高,使冷凝压力升高,制冷机效率降低。空气冷却式冷凝器的最大优点是不需冷却水,因此特别适用于缺水地区或者供水困难的场合。2.2水冷式冷凝器用水作为冷却介质,使高温高压的气态制冷剂冷凝的设备,称为水冷式冷凝器。水冷式冷凝器的冷凝温度较风冷式冷凝器低,这对压缩机的制冷能力和运行的经济性都比较有利,目前在国内工业制冷系统中得到了广泛应用。水冷式冷凝器中使用的冷却水,可以一次流过,也可以循环使用。由于水资源短缺,目前普遍采用循环水的形式。使用循环水时,需设有冷却水塔等装置,使离开冷凝器的水得到冷却降温,以便重复循环使用。常用的水冷式冷凝器有卧式壳管式冷凝器、立式壳管式冷凝器和套管式冷凝器等型式。2.3空气与水联合冷却式冷凝器2.3.1淋水式冷凝器冷却水通过配水槽流到换热管组上,以水膜的形式往下流,水蒸发带走热量,即水以显热和潜热的方式起到冷却作用。但由于水膜外的空气,并不是在风机作用下以较高的速度流过,影响了水的蒸发,传热的效果较差。由于传热管之间需保持较大的距离使空气畅通,故这种冷凝器占地面积大,金属耗量大,目前生产和使用较少。2.3.2蒸发式冷凝器蒸发式冷凝器是以蒸发冷凝和显热交换为基础,温度不同的两股流体(空气和水)混合时便放出蒸发潜热,引起较热流体(水)发生冷却,这种冷却效应是借一部分液体变成汽态因而放出蒸发潜热来实现。蒸发式冷凝器是从凉水塔改进而来的,其操作原理和凉水塔基本相同,但相对于凉水塔,由于它省去冷却水在冷凝器中显热传递阶段,使冷凝温度更接近空气的湿球温度,其冷凝温度可比冷却塔水冷式冷凝器系统低35,这可大大降低压缩机的功耗,其循环水用量减少,只有凉水塔的三分之一左右。蒸发式冷凝器主要由换热器、水循环系统及鼓风机三部分组成。传热部分的换热器是一个蛇形管组,装在一个立式箱体内,箱体的底部为水盘。异型管式蒸发式冷凝器包括:(1)换热盘管。蒸发式冷凝器一般用光管,但随着对换热管的不断研究,出现了椭圆管、异滴形管、波纹管和交变曲面波纹管等新型高效盘管 (a)螺旋槽管;(b)横纹管;(c)扎槽管;(d)扭曲管。(2)风机。蒸发式冷凝器有吸风式和送风式两种,吸风式的风机装在箱体顶上,优点是箱体内维持负压,水的蒸发温度比较低,但风机处于潮湿气流中,容易引起腐蚀。(3)喷淋水管和喷嘴。喷淋水的水量配置和均匀布水对蒸发式冷凝器盘管的换热效果有很大影响。根据经验,喷淋水量以能全部润湿盘管表面、形成连续的水膜为最佳,以获得最大的传热系数,并减少水垢。(4)挡水板。挡水板将热湿空气中带的水滴挡住,减少水的吹散损失,一般一个高效挡水板能控制水的损失率为水循环总量0.002%0.2%。蒸发式冷凝器是将进入换热盘管的高温高压制冷剂蒸汽冷凝。盘管顶部的布水系统不断的将冷却水喷淋到蛇形盘管表面,形成薄层水膜,吸收管内制冷剂热量部分蒸发,未蒸发的冷却水回落到水箱进行下一次循环;新风从底部的格扇进入箱体,流经换热盘管将蒸发的水分带走,在冷凝器顶部以饱和湿空气的形式排出。蒸发式冷凝器将风冷和水冷,传热与传质融为一体,是水冷式冷凝器和冷却塔一体化结构的高效冷凝设备。具有以下几个特点:(1)节水。它充分利用水的汽化潜热,一般的水冷式冷凝器每lkg冷却水能带走16.7525. 12kJ热量,而lkg水在常压下蒸发能带走约2428kJ热量,因而蒸发式冷凝器理论耗水量仅为一般水冷式冷凝器的1%;考虑到飞溅损失、排污换水等因素,实际耗水量约为水冷式的5%10%。蒸发式冷凝器大大减少了水的消耗,对于我国水资源严重不足的北方地区有重要意义;(2)节能。由于风冷式冷凝器冷凝能力受限于环境干球温度,而蒸发式冷凝器受限于环境湿球温度,而湿球温度一般比干球温度低814,加上上侧风机给设备造成的负压环境,因此同风冷式冷凝器相比,蒸发式冷凝器冷凝温度较低,而冷凝温度每升高1,单位制冷量的耗电量将增加3%3.5%,所以采用蒸发式冷凝器总功耗也会显著降低。节能效果明显。在HVAC系统中相对于其他冷凝器可以节能20%40%;(3)结构紧凑。因为传热传质两个过程在蒸发式冷凝器内一次完成,因而不需要冷却塔,相对于传统的带冷却塔的水冷式冷凝器,结构更紧凑;(4)不污染环境。不少化工厂以往采用壳管式或淋激式冷凝器,夏季时由于冷凝压力过高,常常采用“放空降压”,但每次放出的并不全是不凝性气体,其中含有大量的氨气,据有关部门取样分析,有时高达90%,不仅氨损失相当严重,还造成环境污染。但用蒸发式冷凝器后不存在这种现象。这对于倡导环保的当今社会具有重要的意义。国外发达国家蒸发式冷凝器的应用十分广泛。3研究进展3.1国外研究进展国外对蒸发式冷凝器进行了大量的研究。早在1952年,S.G.Chuklin就提出了一种关于蒸发式冷凝器设计的普遍化方法3。Parker和Trey bal对蒸发冷却器的传热、传质进行了详细的实验4。Leidenfrost和Korenic在Parker和Treybal的基础上进行了数学模型的改进,他们对喷淋水的流量进行了实验5。Zalewski和Gryglaszewski对冷凝器中水流过管束的传热性能进行了研究6。Alonso提出了一种通用的蒸发冷却器的传热传质模型7。3.2 国内研究进展国内最早研究蒸发冷却技术始于20世纪80年代,但由于当时国内制造水平和对节能节水应用技术意义的认识不足,该技术并未在国内引起足够的重视,相关的理论与实验研究文献也不多见。20世纪90年代后期,随着国家和企业对节能节水的重视,对非饱和蒸发冷却技术的研究逐渐增多起来,研究的内容也更加深入。在理论研究方面,蒋常建等以管内走工艺水的横流式蒸发冷却塔为研究对象,借鉴王铁军的逆流式冷却塔热力计算的数学模型,提出了一种准三维的计算方法;定义了一系列量纲为1参数,通过计算得到了横流式E-NTU的关系线图;讨论了各种参数对其热力性能和E-NTU关系的影响。4应用现状及存在的不足4.1应用现状蒸发式冷凝器在西方发达国家得到日益普遍应用,在国内的应用中,由于西北地区缺水的实际情况,目前蒸发式冷凝器在西北地区推广和应用较多,宾馆、办公楼、商场等民用建
温馨提示:
1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
2: 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
3.本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
提示  人人文库网所有资源均是用户自行上传分享,仅供网友学习交流,未经上传用户书面授权,请勿作他用。
关于本文
本文标题:年产4500吨二硫化碳尾气处理系统及冷凝器设计(全套CAD图+说明书+开题报告+翻译)
链接地址:https://www.renrendoc.com/p-81834900.html

官方联系方式

2:不支持迅雷下载,请使用浏览器下载   
3:不支持QQ浏览器下载,请用其他浏览器   
4:下载后的文档和图纸-无水印   
5:文档经过压缩,下载后原文更清晰   
关于我们 - 网站声明 - 网站地图 - 资源地图 - 友情链接 - 网站客服 - 联系我们

网站客服QQ:2881952447     

copyright@ 2020-2025  renrendoc.com 人人文库版权所有   联系电话:400-852-1180

备案号:蜀ICP备2022000484号-2       经营许可证: 川B2-20220663       公网安备川公网安备: 51019002004831号

本站为文档C2C交易模式,即用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知人人文库网,我们立即给予删除!