已阅读5页,还剩9页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
22.3实际问题与二次函数,第3课时实物抛物线,解一,解二,解三,继续,解一,以抛物线的顶点为原点,以抛物线的对称轴为轴,建立平面直角坐标系,如图所示.,可设这条抛物线所表示的二次函数的解析式为:,当拱桥离水面2m时,水面宽4m,即抛物线过点(2,-2),这条抛物线所表示的二次函数为:,返回,当水面下降1m时,水面的纵坐标为y=-3,这时有:,当水面下降1m时,水面宽度增加了,解二,如图所示,以抛物线和水面的两个交点的连线为x轴,以抛物线的对称轴为y轴,建立平面直角坐标系.,这条抛物线所表示的二次函数为:,可设这条抛物线所表示的二次函数的解析式为:,此时,抛物线的顶点为(0,2),返回,当水面下降1m时,水面的纵坐标为y=-1,这时有:,当水面下降1m时,水面宽度增加了,解三,如图所示,以抛物线和水面的两个交点的连线为x轴,以其中的一个交点(如左边的点)为原点,建立平面直角坐标系.,返回,例:某工厂大门是一抛物线形的水泥建筑物,大门底部宽AB=4m,顶部C离地面的高度为4.4m,现有载满货物的汽车欲通过大门,货物顶部距地面2.7m,装货宽度为2.4m.这辆汽车能否顺利通过大门?若能,请你通过计算加以说明;若不能,请简要说明理由.,一般步骤:,(1).建立适当的直角系,并将已知条件转化为点的坐标,(2).合理地设出所求的函数的表达式,并代入已知条件或点的坐标,求出关系式,(3).利用关系式求解实际问题.,总结,1.有一辆载有长方体体状集装箱的货车要想通过洞拱横截面为抛物线的隧道,如图1,已知沿底部宽AB为4m,高OC为3.2m;集装箱的宽与车的宽相同都是2.4m;集装箱顶部离地面2.1m。该车能通过隧道吗?请说明理由.,练习,2.一场篮球赛中,球员甲跳起投篮,如图2,已知球在A处出手时离地面20/9m,与篮筐中心C的水平距离是7m,当球运行的水平距离是4m时,达到最大高度4m(B处),设篮球运行的路线为抛物线.篮筐距地面3m.问此球能否投中?,(选做)此时对方球员乙前
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 地基处理施工方案技术要求
- 具身智能+儿童教育机器人交互效果评估方案可行性报告
- 具身智能+应急响应人机协作研究报告
- 具身智能+商场顾客群体流动密度预测与引导方案可行性报告
- 具身智能+老年人日常辅助行为识别与风险预警研究报告
- 具身智能+远程医疗康复机器人自适应运动指导方案可行性报告
- 具身智能在舞台表演中的动作捕捉与模拟方案可行性报告
- 具身智能+物流仓储分拣系统效率提升研究报告
- 具身智能+老年人辅助生活智能穿戴设备研究报告
- 具身智能+教育场景下的个性化教学策略方案可行性报告
- 小篆峄山碑教学课件
- 疫苗管理冷链课件
- 办公室信息安全课件
- 2025年福建司炉证考试题库
- 管理层财务基础知识培训
- 小学生电力科普小讲座
- 医院感染进修总结汇报
- 口腔病历汇报展示
- 2025至2031年中国冷冻梨行业投资前景及策略咨询研究报告
- 决定论视域下道德责任相容论的深度剖析与辩护
- 工贸作业票管理办法
评论
0/150
提交评论